
62 Makoto Hamana

Semantic Labelling for Proving
Termination of Combinatory Reduction Systems

Makoto Hamana

Department of Computer Science, Gunma University, Japan
hamana@cs.gunma-u.ac.jp

Abstract. We give a novel transformation method for proving termination of
higher-order rewrite rules in Klop’s format called Combinatory Reduction Sys-
tem (CRS). The format CRS essentially covers the usual pure higher-order func-
tional programs such as Haskell. Our method called higher-order semantic la-
belling is an extension of a method known in the theory of term rewriting. This at-
taches semantics of the arguments to each function symbol. We systematically de-
fine the labelling by using the complete algebraic semantics of CRS, Σ-monoids.
We also examine the power of higher-order semantic labelling by several ex-
amples. This includes an interesting example from the viewpoint of functional
programming.

1 Introduction

Rewrite rules appear everywhere in computer science. In programming language theory,
we use often transformation of states, expressions, terms, or programs given by some
form of rewrite rules. Functional programs such as Haskell can also be regarded as
rewrite rules. When reasoning with such rewrite rules, termination is one of the most
important property, because it is necessary for decidable equality checking. This topic
has been extensively investigated in the field of term rewriting [BN98, Ter03].

In this paper, we deal with higher-order rewrite rules in Klop’s format called com-
binatory reduction systems (CRSs) [Klo80, KOR93]. The format CRS is known as one
of the most early detailed formulation of higher-order rewriting systems (i.e. rewriting
systems having the feature of variable binding and meta-level substitutions) in the the-
ory of term rewriting. A CRS is a set of rewrite rules on second-order terms. We give a
method to prove termination, meaning strong normalisation, of a CRS by a translation
called higher-order semantic labelling. This is an extension of a method for first-order
term rewriting systems (TRSs) [Zan95].

Weakness of existing syntactic methods. Higher-order extensions of term rewrit-
ing systems [Ter03] are known as several formats: major representatives are CRSs,
Higher-order Rewrite Systems [Nip91], and Inductive Data Type Systems [BJO02].
There exist several termination criteria: higher-order recursive path order (HORPO)
[JR07], the General Schema [BJO02, Bla00], hereditary monotone functional inter-
pretation [Pol94], binding algebra interpretation [Ham05]. Recently improvements of
HORPO/General Schema are actively investigated [BR01, Raa01, JR06]. A recent sur-
vey on this field can be found in [BJR08].

S.Escobar (Ed.): WFLP 2009, LNCS 5979, pp. 62–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Semantic Labelling for Proving Termination of Combinatory Reduction Systems 63

For CRSs, the General Schema is a decidable syntactic criteria of termination [Bla00].
The idea of the General Schema is to control the arguments of the right-hand side re-
cursive calls in a rewrite rule by checking that they are smaller than the left-hand sides
ones in the strict subterm order extended in a multiset or lexicographic manner.

The General Schema criteria is effective for rewrite rules defined structural recur-
sively on term structures. However, there are many realistic rewrite rules which do not fit
into this scheme. We use often rewrite rules defined non-structural recursively on term
structures. The General Schema is not applicable to prove termination of such rewrite
rules. What does this mean? This implies that rather than syntactic structures, semantic
structures should be more explicit in many situations, and they can be a “hint” of com-
plete termination proofs. Our approach to give termination proofs in this paper does not
aim to be fully automatic. Finding appropriate semantics of rewrite rules automatically
is hard in general. But in most cases, one has the intended semantics for rewrite rules
in one’s mind that matches the intended application (if not, why one could write such
rewrite rules?) Hence, making such semantics explicit is merely a matter of formula-
tion. Notice that our method is not fully semantical either. We combine both syntactic
and semantical information. Below, we give two examples to illustrate this situation.

Example 1 (The prefix sum of a list). Consider the following CRS P for computing
the prefix sum of a list, i.e., the list with the sum of all prefixes of a given list using the
higher-order function map (taken from [BR01]).

map(a.f[a], nil)→ nil

map(a.f[a], x : xs)→ f[x] : map(a.f[a], xs)
ps(nil)→ nil

ps(x : xs)→ x : ps(map(a.x + a, xs))

We want to prove termination of the CRS P. Unfortunately, the CRS P does not
follow the General Schema, hence the exiting syntactic method is not powerful enough.
This is because the argument of ps in the right-hand side of the last rule is not a subterm
of the argument of ps in the left-hand side. However, we know that the map function
does not change the length of a list, thus a shorter list than x : xs is always used in
the recursive call of ps. To prove termination of ps, this “semantic” information (rather
than only syntactical structures) should be effectively used.

Higher-order semantic labelling developed in this paper solves this problem. It is a
method to reflect such information in rewrite rules. In this case, we use the “length” of
a list for ps as the semantics. Higher-order semantic labelling transforms the original
CRS P to the following labelled CRS:

ps0(nil)→ nil

psi+1(x : xs)→ x : psi(map(a.x + a, xs))

where i ∈ N. This i denotes the “semantics” of argument ps, i.e., the length of a list.
This transformation to attach semantics to function symbols is systematically defined in
the structure of Σ-monoids, which is abstract algebraic structures of higher-order terms.
Then, this labelled CRS successfully follows the General Schema with the precedence

64 Makoto Hamana

psi > ps j > map > : for i > j ∈ N. This ordering is used to compare two term
structures in a recursive manner. If two root function symbols can be compared by
the ordering, thier arguments need not to be comparied. Hence, the order psi+1 > psi
effectively solve the above mentioned problem on the mismatch between the term size
and semantical size. Our main theorem (Thm. 10) of higher-order semantic labelling is
that if the labelled CRS is terminating, then the original CRS is terminating. Hence, we
can conclude termination of the CRS P.

Example 2 (Haskell’s rewrite rules). Glasgow Haskell Compiler (GHC) has a pragma
called “rewrite rules” [JTH01] for an optimization purpose. GHC applies rewrite rules
to the source program wherever it can. The following is an example that composes two
maps in a program.

{-# RULES

"map/map" forall f g xs. map f (map g xs) = map (f.g) xs

#-}

Rewriting by this Haskell’s rewrite rule are expected to be terminating at the com-
pile time. But GHC makes no attempt to ensure that the rule is terminating because
of complications of the combination of the rewrite rule and compiler’s optimization
rules [JTH01]. But ideally we should ensure termination of rewrite rules. To consider
this problem in a formal setting, we model this Haskell’s rewrite rule as the following
CRS’s rewrite rule:

map(f,map(g, xs))→ map(a.f[g[a]], xs)

A difficulty is that this rule is not defined structural recursively on a data structure.
Moreover, the first argument of map in the right-hand side is bigger than ones in the
left-hand side. Hence, this does not follow the General Schema.

Higher-order semantic labelling again solves this problem. We use “the number of
maps” in the second argument of map as the semantics. Higher-order semantic la-
belling transforms the original rule to the following labelled rules:

mapi+1(f,mapi(g, xs))→ mapi(a.f[g[a]], xs) for all i ∈ N
mapi(f, xs) → map j(f, xs) for all i > j ∈ N

Each label denotes the number of maps in the second argument. The General Schema
succeeds in showing termination of the rules with the precedence mapi > map j for all
i > j ∈ N. Hence by our main theorem, we conclude termination of the original map’s
rule..

These two examples use seemingly simple semantics, i.e., “the length of lists” and
“the number of maps”. But to compute them actually needs a sophisticated semantical
account because the rewrite rules involve higher-order functions. Moreover, semantics
need not to be numbers or “sizes”. Arbitrary (higher-order) algebraic structures (e.g.
λ-terms, domains, categories, etc.) can be semantics of a CRS. In other words, the se-
mantic information for labels cannot be obtained by just syntactic counting of symbols.
In this paper, using the complete algebraic semantics Σ-monoid, we systematically give
higher-order semantic labelling for CRSs.

Semantic Labelling for Proving Termination of Combinatory Reduction Systems 65

Contribution. The contribution of this paper is summarised as follows.

(i) Theoretical contribution.
• We generalised semantics labelling for TRSs [Zan95] to higher-order semantic

labelling for CRSs in the framework of Σ-monoids. This also showed that Σ-
monoids was certainly the right structure as the semantics of CRSs.
• We showed that semantic labelled meta-terms form a Σ-monoid.
• We identified the commutativity of the labelling operation with the substitu-

tions appearing in formulation of CRSs is an essential property to establish
semantic labelling.

(ii) Practical contribution. We demonstrate higher-order semantic labelling by several
examples for which the General Schema alone fails.

Background. Semantic labelling on higher-order terms has been defined for Inductive
Datatype Systems [Ham07]. The present paper much simplifies the labelling method
to deal with CRSs. We also aim to apply it to examples taken from functional pro-
gramming. The semantics used in this paper is based on the algebraic semantics of
CRS Σ-monoids. The notion of Σ-monoids was introduced by Fiore, Plotkin and Turi
[FPT99], then a higher-order abstract syntax for free Σ-monoids was developed by the
author [Ham04]. The algebraic semantics for CRSs [Ham05] was an application of this
Σ-monoid structure. The outline of semantic labelling for CRSs (without proofs) was
presented at 13th International Conference on Logic for Programming Artificial Intelli-
gence Reasoning (LPAR’06) as a short paper.

How to read the paper. Theories on term rewriting usually avoid the use of seman-
tics as much as possible. In contrast to it, we rely on the semantics of higher-order
terms and rewriting. The semantics structure Σ-monoid is a natural extension of the
first-order universal algebra to the second-order setting by shifting the base category
from Set to a presheaf category [FPT99]. It is systematically defined in the framework
of categorical universal algebra. Why categorical notions are needed is to make defini-
tions and discussions on higher-order rewriting mathematically simple, manageable and
systematic. The seemingly “elementary” extension of first-order semantic structures to
higher-order setting by hand (within ordinary set-theoretic setting) makes definitions
and theories quite complex because of the combinations of ordinary first-order struc-
tures and higher-order structures. Category theory prevents this explosion by giving a
right abstraction for algebraic and higher-order terms. Hence, this paper assumes basic
knowledge of category theory for reading the development of the semantic labelling
method, such as functor categories, monoidal categories, monoids and algebras (e.g.
[Mac71] Chap. II, VII).

Future work. As a future work, we plan to make our method to be more accessible
for users of proof assitants and dependently-typed programming languages. One of the
most expected area that seriously needs termination proofs is proof assitants. Finding
appropriate semantics fully automatic is impossible, but one’s intended semantics might
be directly mechanised within a proof assitant such as Coq or Agda. Combining it
with syntactic methods will greatly reduce efforts to give full termination proofs in
proof assitants. Hence, giving a convenient library and recipes for higher-order semantic
labelling in a proof assitant might be interesting.

66 Makoto Hamana

Organisation. This paper is organised as follows. We first review the definition of
CRSs in Section 2 and the semantics of CRSs in Section 3. We give higher-order se-
mantic labelling of CRSs in Section 4. In Section 5, we give the quasi-model version of
higher-order semantic labelling and show several examples of termination proof using
our method. All omitted proofs are given in Appendix.

2 Combinatory Reduction Systems

CRS. We review the definition of CRSs. We use the definition of the standard reference
[KOR93] of CRSs with a slight modification of syntax used in [DR98]: −.− and −[−]
instead of ordinary ones [−]− and −(−) in [KOR93].

Assume a signature Σ of function symbols f l with arity, metavariables zl with arity
(in both cases the superscript l ∈ N is the arity).

(i) CRS terms have the form t ::= x | x.t | f l(t1, . . . , tl). These forms are respectively
called variables, abstractions, and function terms.

(ii) CRS meta-terms extend CRS terms to t ::= x | x.t | f l(t1, . . . , tl) | zl [t1, . . . , tl].
The last form is called a meta-application.

(iii) A valuation θ is a mapping that assigns to n-ary metavariable z an n-ary substitute
(a meta-level lambda notation, cf. [KOR93]) θ : z - λ(x1, . . . , xn).t where t is a
term. Any valuation is extended to a function on meta-terms:

θ(x) = x θ(f (t1, . . . , tl)) = f (θ(t1), . . . , θ(tl))
θ(x.t) = x.θ(t) θ(z[t1, . . . , tl]) = θ(z) (θ(t1), . . . , θ(tl)) (1)

Note that the right-hand side of the equation (1) uses an application at the meta-
level to the substitute. The valuation is safe if there are no two substitutes θ(z) and
θ(z’) such that θ(z) contains a free variable x which appears also bound in θ(z’).

(iv) CRS rules, written l → r, consist of two meta-terms l and r with the following
additional restrictions:

(iv-a) l and r are closed (w.r.t. variables) meta-terms,
(iv-b) l must be a “pattern”, i.e. a function term where all meta-applications have the

form z[x1, . . . , xn] with distinct variables xi,
(iv-c) r can only contain meta-applications with meta-variables occurring in the left-

hand side.
The rewrite rule l → r is safe for θ , if for all z in l and r, the substitute θ(z) does
not have a free variable x occurring in an abstraction x.− of l and r. A set of rewrite
rules under the signature Σ is called a CRS and denoted by (Σ,R) or simply R.

(v) The CRS rewrite relation→R is generated by context and safe valuation closure of
a given CRS R:

l→ r ∈ R
θ(l)→R θ(r)

safe θ
s→R t

x.s→R x.t
s→R t

f (. . . , s, . . .)→R f (. . . , t, . . .)

where l→ r must be safe for the safe valuation θ. The third rule means rewriting at
the i-th argument of f . We say that R is terminating if→R is well-founded.

Semantic Labelling for Proving Termination of Combinatory Reduction Systems 67

Structural CRSs. In this paper, we treat CRSs using (meta-)terms built from binding
signatures, which we call structural CRSs (cf. Aczel’s contraction schemes [Acz78]).
A binding signature Σ consists of a set Σ of function symbols with an arity function a :
Σ→ N∗, whereN∗ denotes the set of all finite sequences of natural numbers. A function
symbol of binding arity 〈n1, . . . , nl〉, denoted by f : 〈n1, . . . , nl〉, has l arguments and
binds ni variables in the i-th argument (1 ≤ i ≤ l). For a formal treatment of named
variables modulo α-equivalence in CRSs, we assume the method of de Bruijn levels
[dB72] for the naming convention of variables (N.B. not for metavariables) in CRSs. We
also use the convention that n ∈ N denotes the set {1, . . . , n} (n is possibly 0). Under the
method of de Bruijn levels, this n means the set of variables from 1 to n. Structural meta-
terms are of the form t ::= x | f (x1 · · · xi1.t1 , . . . , x1 · · · xil.tl) | zl [t1, . . . , tl] satisfying
the restriction generated by the inference system given blow. Fix an N-indexed set Z of
metavariables defined by Z(l) , {z | z has arity l}. A meta-term t is structural if n ` t
is derived from the following rules for some n ∈ N.

x ∈ n
n ` x

f : 〈i1, . . . , il〉 ∈ Σ n+i1 ` t1 · · · n+il ` tl
n ` f (n+1 . . . n+i1.t1, . . . , n+1 . . . n+il.tl)
z ∈ Z(l) n ` t1 · · · n ` tl

n ` z[t1, . . . , tl]

By using these rules, we obtain meta-terms in the method of de Bruijn levels. A rewrite
rule 1. · · · n.l → 1. · · · n.r is called structural if l and r are structural, i.e. n ` l and
n ` l. A CRS is structural if all rules are structural. A valuation θ is structural if for
any mapping by θ : z 7→ λ(x1, . . . , xn).t, t is a structural term and all variables in t are
included in x1, . . . , xn. We may use the notation Z|n ` s → t for a rule or a rewrite step
if metavariables and variables in s and t are included in Z and n respectively. We may
also simply write Z ` s→ t or n ` s→ t if the other part is not important.

3 Semantics of CRSs

3.1 Binding Algebras

The semantics of CRS is given by the notion of binding algebras and Σ-monoids. What
are Σ-monoids? A Σ-monoid is an algebra equipped with substitution operation on (se-
mantics of) terms. This substitution operation is called multiplication, typically denoted
by β in this paper. Why this is a multiplication is that the substitution operation satisfies
the monoid law (imagine compositions of substitutions with the identity substitution)
in an abstract setting.

We review the notion of binding algebras and Σ-monoids. For detail, see [FPT99].
Let F be the category which has finite cardinals n = {1, . . . , n} (n is possibly 0) as ob-
jects, and all functions between them as arrows. This is the category of object variables
by the method of de Bruijn levels (i.e. natural numbers) and their renamings. We use
the functor category SetF. An object A of SetF is often called a presheaf . Subscripts
may be used to denote parameters. The functor δ : SetF → SetF for “index extension”
is defined by (δL)(n) = L(n+1) for L ∈ SetF. To a binding signature Σ, we associate the
signature functor Σ : SetF → SetF given by ΣA =

∐
f :〈n1,...,nl〉∈Σ

∏
1≤i≤l δ

ni A.A Σ-algebra

68 Makoto Hamana

is a pair (A, α) consisting of a presheaf A ∈ SetF called a carrier and a map ([] denotes
a copair of coproducts) α = [fA] f∈Σ : ΣA - A called an algebra structure, where
fA is an operation fA : δn1 A × . . . × δnl A - A defined for each function symbol f :
〈n1, . . . , nl〉 ∈ Σ. The “presheaf of variables” V ∈ SetF is defined by V(n) = n, V(ρ) =
ρ (ρ : m → n in F). For presheaves A and B, (A • B)(n) , (

∐
m∈N A(m) × B(n)m)/ ∼

where ∼ is the equivalence relation generated by (t; uρ1, . . . , uρm) ∼ (A(ρ)(t); u1, . . . , ul)
for ρ : m → l in F. Then, (SetF, •,V) forms a monoidal category [Mac71], where the
“substitution” monoidal product is defined as follows. An element of A(m) × B(n)m is
denoted by (t; u1, . . . , um) where t ∈ A(m) and u1, . . . , um ∈ B(m). A representative of an
equivalence class in A•B(n) is also denoted by this notation. Let Σ be a signature functor
with strength st defined by a binding signature. A Σ-monoid M = (M, α, η, µ) consists
of a monoid (M, η : V → M, µ : M • M → M) in the monoidal category (SetF, •,V)
with a Σ algebra structure α : ΣM → M satisfying µ◦(α•idM) = α◦Σµ◦st. A Σ-monoid
morphism M - M′ is a morphism in SetF which is both Σ-algebra homomorphism
and monoid morphism.

3.2 Algebra of Meta-terms

Let Z be an arbitrary N-indexed set of metavariables (cf. Sec. 2). The presheaf MΣZ of
meta-terms is defined by MΣZ(n) = {t | n ` t}.We abbreviate n+1, . . . , n+k.t to n+~k.t. For
every f : 〈i1, . . . , il〉 ∈ Σ, we define the map fT : δi1 MΣZ×· · ·×δil MΣZ - MΣZ in SetF
by (t1, . . . , tl) - f (n+~i1.t1, . . . , n+~il.tl). The multiplication β : MΣZ•MΣZ - MΣZ
is a map in SetF that performs a substitution of variables defined inductively as follows.

β(n)(i; ~t) = ti β(n)(z[s1, . . . , sl]; ~t) = z[β(n)(s1;~t), . . . , β(n)(sl;~t)]

β(n)(f (m+~i1.s1, . . . ,m+~il.sl); ~t) = f (m+~i1. β(m+i1)(s1; upi1 (~t),m+1, . . . ,m+i1), . . .

m+~il. β(m+il)(sl; upil (~t),m+1, . . . ,m+il)

where f : 〈i1, . . . , il〉 ∈ Σ and ~t denotes t1, . . . , tm, and the weakening map from MΣZ(m)
to MΣZ(m + i) is defined by upi , MΣZ(idm + wi) where wi : 0 → i. Then, the
structural meta-terms (MΣZ, [fT] f∈Σ, ν, β) is a free Σ-monoid over a presheaf Ẑ, where
ν : V - MΣZ in SetF is defined by x - x and Ẑ(n) =

∐
k∈N F(k, n) × Z(k)

[Ham04]. Hereafter, given N-indexed set Z, we abuse the notation to use Z to denote its
presheaf version Ẑ ∈ SetF in an assignment.

Definition 3. We call an assignment a morphism φ : Z - A of SetF whose target
A has a Σ-monoid structure (A, α, η, µ). By freeness, an assignment φ : Z - A is
extended to the Σ-monoid morphism φ∗ : MΣZ - A defined by

φ∗n(x) = ηn(x) (x ∈ n)

φ∗n(f (n+~i1.t1, . . . , n+~il.tl)) = fA(φ∗n+i1 (t1), . . . , φ∗n+il (tl))

φ∗n(z[t1, . . . , tl]) = µn(φl(z); φ
∗
n(t1), . . . φ∗n(tl))

where f : 〈i1, . . . , il〉 ∈ Σ.

Semantic Labelling for Proving Termination of Combinatory Reduction Systems 69

When the N-indexed set of metavariables Z = 0 (empty set), MΣ0 is the presheaf
of all structural terms (written as TΣV in [Ham05]). Moreover, MΣ0 forms the initial Σ-
monoid [FPT99, Ham04]. An assignment θ : Z - MΣ0 gives a structural valuation,
and θ∗ : MΣZ - MΣ0 gives its “homomorphic” extension on meta-terms. We also
call a valuation an assignment θ : Z - MΣ0.

3.3 Algebraic Semantics of Rewriting

Henceforth, in this paper we consider structural CRSs only. So we say “a CRS” for a
structural CRS.

The notions of models and quasi-models for CRSs are defined as follows. For a
presheaf A, we write ≥A for a family of preorders {≥A(n)}n∈N, where ≥A(n) is a preorder
on a set A(n) for each n ∈ N. Let (A1,≥A1), . . . , (Al,≥Al), (B,≥B) be presheaves equipped
with preorders. A map f : A1× · · ·×Al - B in SetF is weakly monotone if all n ∈ N,
all a1, b1 ∈ A1(n), . . . , al, bl ∈ Al(n) with ak ≥A(n) bk for some k and a j = b j for all j , k,
then f (n)(a1, . . . , al) ≥B(n) f (n)(b1, . . . , bl). A weakly monotone V+Σ-algebra (A,≥A)
is a V+Σ-algebra A = (A, [ν, [fA] f∈Σ]), where ν : V - A, equipped with preorders
{≥A(n)}n∈N, such that every operation fA is weakly monotone. Let A be a V + Σ-algebra.
A term-generated assignment φ : Z - A is a morphism of SetF that is expressed as
the composite Z

θ- MΣ0
!A- A for some valuation θ, where !A is the unique V+Σ-

algebra homomorphism from the initial V + Σ-algebra MΣ0. A V+Σ-algebra A satisfies
a rewrite rule Z ` ~n.l → ~n.r if φ∗(n)(l) = φ∗(n)(r) for all term-generated assignments
φ : Z - A. A model A for a CRS (Σ,R) is a V+Σ-algebra A that satisfies all rules
in the weakening closure R◦ (cf. [Ham05]). A weakly monotone V+Σ-algebra (A,≥A)
satisfies a rewrite rule Z ` ~n.l → ~n.r if φ∗(n)(l) ≥A(n) φ

∗(n)(r) for all term-generated
assignments φ : Z - A. A quasi-model A for (Σ,R) is a weakly monotone V+Σ-
algebra A that satisfies all rules in the weakening closure R◦. An important fact is that
any Σ-monoid (M, α, ν, µ) gives a V+Σ-algebra (M, [ν, α]). Thus in this paper, we will
basically work with Σ-monoids rather than V+Σ-algebras, which gives uniform semantic
treatment of algebras with substitutions.

4 Higher-Order Semantic Labelling

We are now ready to give our semantic labelling for CRSs. We give an abstract formu-
lation along the idea of initial algebra semantics in the framework of Σ-monoids.

4.1 Semantic Labelling for Meta-terms

Henceforth, we assume that Z is an N-indexed set of metavariables, Σ is a binding
signature and M is a Σ-monoid. We introduce labelling of functions symbols: choose
for every f ∈ Σ a corresponding non-empty set S f of labels, called semantic label set.
The binding signature Σ for labelled function symbols is defined by

Σ = { fp | f ∈ Σ, p ∈ S f }

70 Makoto Hamana

where the binding arity of fp is defined to be the binding arity of f . A function symbol
is labelled if S f contains more than one element. For unlabelled f , the set S f containing
only one element can be left implicit; in that case we will often write f instead of fp.

Choose for f : 〈i1, . . . , il〉 ∈ Σ, a semantic label map that is a morphism of SetF
defined by

〈〈−〉〉 f : δi1 M × · · · × δil M - KS f .

where KS f ∈ SetF is the constant presheaf defined by KS f (n) = S f . If it is clear from the
context, the superscript of 〈〈−〉〉 f will be omitted. The semantic label map was originally
called a projection, denoted by π f in [Zan95]. Then, as in the case of ordinary signature,
we define MΣZ by the presheaf of all meta-terms generated by the labelled signature Σ.

Definition 4 (Labelling map). Let φ : Z - M be an assignment. The labelling map
φL : MΣZ - MΣZ is a morphism of SetF defined by

φL
n : MΣZn

- MΣZn

φL
n(x) = x φL

n(z[~t]) = z[φL
n~t]

φL
n(f (n+~i1.t1, . . . , n+~il.tl)) = f〈〈φ∗n+i1 (t1),...,φ∗n+il (tl)〉〉

f
n
(n+~i1.φL

n+i1 t1, . . . , n+~il.φL
n+il tl)

We state the following characterisation that clarifies what is the mathematical struc-
ture of semantic labelled meta-terms.

Theorem 5. For each assignment φ : Z - M, (MΣZ, [fφ] f∈Σ, νφ, βφ) is a Σ-monoid.

Corollary 6. For each assignment φ : Z → M, the labelling map φL : MΣZ → MΣZ is
the unique Σ-monoid morphism (MΣZ, [fT] f∈Σ, ν, β)→ (MΣZ, [fφ] f∈Σ, νφ, βφ).

Proof. Let iφ : Z → MΣZ be the assignment into the Σ-monoid (MΣZ, [fφ] f∈Σ, νφ, βφ)
defined by z 7→ z. It is clear that i∗φ = φ

L by just comparing the definitions of φL and the
Σ-monoid extension (−)∗. Hence φL gives a Σ-monoid morphism. ut

Below we describes the Σ-monoid structure on MΣZ mentioned above for each as-
signment φ : Z - M. Let | − | be the function that erases all labels in a labeled
meta-term for the ordinary signature Σ.

Unit. νφ : V→ MΣZ is defined by x 7→ x.

Operations. For f : 〈i1, . . . , il〉 ∈ Σ, the corresponding operation fφ : δi1 MΣZ × · · · ×
δil MΣZ - MΣZ is defined by

fφ(n)(s1, . . . , sl) = f〈〈φ∗n+i1
(|s1 |),...,φ∗n+il

(|sl |)〉〉
n
(n + i1.s1, . . . , n + il.sl).

Multiplication. βφ : MΣZ • MΣZ - MΣZ is defined by

βφ(n)(x; ~t) = tx

βφ(n)(z[s1, . . . , sl]; ~t) = z[βφ(n)(s1;~t), . . . , βφ(n)(sl;~t)]

βφ(n)(fq(m+~i1.s1, . . . ,m+~il.sl); ~t)

=

 fp(m+~i1. βφ(m+i1)(s1; upm+i1 (~t),m+1, . . . ,m+i1), . . .) if m + 1 > n
fp(n+~i1. βφ(n+i1)(s1; upn+i1 (~t), n+1, . . . , n+i1), . . .) if m + 1 ≤ n

Semantic Labelling for Proving Termination of Combinatory Reduction Systems 71

where p = 〈〈φ∗(n)|βφ(n+i1)(s1; upi1 (~t), n+1, . . . , n+i1)|, . . . , φ∗(n)|βφ(n+il)(sl; upil (~t), n+
1, . . . , n + il)|〉〉n. For the third clause, we assume that m is the length of ~t, and I is the
maximum of i1, . . . , il, Note that the length of “upi1 (~t), n+1, . . . , n+i1” is m + i1, and it
renames m + k by n + k to make bound variables sense.

Laws. To check that MΣZ satisfies the monoid law is straightforward induction on meta-
terms. To check the Σ-monoid law βφ ◦ ([fφ] f∈Σ • id) = [fφ] f∈Σ ◦ Σβφ ◦ st, we instantiate
this at n ∈ F and chase an element, this eventually becomes the equality

βφ(n)(fr(m+~i1.s1, . . . ,m+~il.sl); ~t) = fp(m+~i1. βφ(m+i1)(s1; upi1 (~t),m+1, . . . ,m+i1), . . .

m+~il. βφ(m+il)(sl; upil (~t),m+1, . . . ,m+il)

where r = 〈〈φ∗n+i1
(|s1|), . . . , φ∗n+il

(|sl|)〉〉n and p is the one given above. This obviously
holds by the definition of βφ.

4.2 Commutativity
In CRSs, there are two kinds of variables, i.e. “variables” and “metavariables”. Accord-
ingly, there are two kinds of substitutions:

• substitution of variables (written as β in Lemma 7), to perform (essentially) the
β-reduction of an instantiated meta-application, such as an instance of f[x].
• substitution of metavariables (written as θ in Lemma 8), used to instantiate rewrite

rules, and formally called valuation (Def. 3).

The labelling map φL has to commute with these two substitutions. This is needed is
that to establish higher-order semantic labelling. We translate a usual rewrite s→R t to
the labelled rewrite φL

n s →R φL
nt (Prop. 9). This process requires to push substitutions

from inside to outside of an application of the labelling map in term structures in two
levels (i.e. for variables and for metavariables). Mathematically, this is commutativity
of labelling with substitutions.

Lemma 7. Let φ : 0 - M be an assignment. Then, the following diagram com-
mutes in SetF:

MΣ0 • MΣ0
β - MΣ0

MΣ0 • MΣ0

φL • φL

?

βφ
- MΣ0

φL

?

Proof. Since φL is a Σ-monoid morphism, it preserves the multiplication.

Lemma 8. Let φ : 0 - M and θ : Z - MΣ0 be assignments. Then, the following
diagram commutes in SetF:

MΣZ
θ∗ - MΣ0

MΣZ

(φ∗θ)L

?

(φLθ)∗
- MΣ0

φL

?

72 Makoto Hamana

Here (−)∗ denotes the Σ-monoid morphism extension (−)∗ (cf. Def. 3) for the case of
the labelled signature Σ.

4.3 Labelled System

For a given CRS (Σ,R) and Σ-monoid M, we define the labelled rules by

R = {Z ` ~n.φL
nl→ ~n.φL

nr | Z ` ~n.l→ ~n.r ∈ R, assignment φ : Z - M}.

Thus R is a set of rewrite rules on labelled terms in MΣZ(0). So, (Σ,R) forms a CRS
that gives rewriting on Σ-terms. We have seen that the labelling map φL is a Σ-monoid
morphism, i.e., preserves Σ-meta-term structures. The following proposition states that
φL moreover preserves R-rewrite structures.

Proposition 9. Let M be a model of R. If we have CRS rewriting n ` s→R t on MΣ0n,
then for the assignment φ : 0 - M, we have rewriting n ` φL

n s→R φL
nt on MΣ0n.

Theorem 10 (Higher-order semantic labelling). Let M be a model of R. A CRS R is
terminating if and only if R is terminating.

Proof. For both directions, we prove contrapositions. [⇐]: By Prop. 9. [⇒]: By erasing
all labels in rewrite steps. ut

4.4 Example

We illustrate how to apply the higher-order semantic labelling method. Higher-order se-
mantic labelling itself merely transforms a CRS into a labelled one. We need separately
a way to prove termination of the labelled system. For this purpose, we use Blanqui’s
version of the General Schema for CRSs [Bla00] to prove termination of labelled CRSs
because in our experience, this is the most powerful decidable method to prove termi-
nation of CRSs. The General Schema uses a precedence which is a partial order on
function symbols occurring in a CRS. Using a precedence, if all rewrite rules of a given
CRSs follows the General Schema, we conclude termination of it.

Example 11 (CRS for prefix sum). Consider the example of CRS P for computing
prefix sum of lists given in Example 1. The CRS P is formulated under the binding
signature Σ = {map : 〈1, 0〉,S, ps : 〈0〉, 0, nil : 〈〉,+, “ : ” : 〈0, 0〉}.

To use higher-order semantic labelling, we need a model of P. Here we take the
presheaf Mn , (Nn → N) of all functions on N. This M forms a monoid in the
monoidal category SetF by taking the multiplication β : M • M → M as the com-
position “◦”, and the unit ν : V → M as the projections of Cartesian products i 7→ πi.
To construct a Σ-monoidM, we define a Σ-algebra structure onM. First, we define the
operations at the stage 0 (here we call the component parameter of a natural transfor-
mation stage):

mapM0
(f , y) = y ps(x) = x :M0 (x, y) = y + 1 nilM0 = 0 x +M0 y = 0.

Semantic Labelling for Proving Termination of Combinatory Reduction Systems 73

The idea of this model is to count the number of cons’s. The definition of :M0 reflects
this idea and the definition of mapM0

comes from the observation that map does not
change the number of cons’s. For each f : 〈i1, . . . , il〉 ∈ Σ, the operation at stage n ≥ 1 is
given by using pairing of functions fMn (a1, . . . , al) , fM0◦〈a1, . . . , al〉,more concretely,
fMn (a1, . . . , al)(Γ) = fM0 (a1(Γ), . . . , al(Γ)) for Γ ∈ Nn. This indeed gives a morphism
of SetF. We can straightforwardly check that this gives a model of P. We label the
function symbol ps and assume that other function symbols are unlabelled. We use the
natural numbers N as the semantic label set S ps. The semantic label map is defined by
〈〈x〉〉ps

0 = x. Then, we have the following labelled rules

ps0(nil)→ nil

psi+1(x : xs)→ x : psi(map(a.x + a, xs))

for all i ∈ N. the General Schema succeeds in showing termination of this labelled CRS
with the precedence psi > ps j > map > nil, : for i > j ∈ N.

5 Labelling with Quasi-Models

Until now the model M was a presheaf and semantic label set S f was a set. Here we
require them to be equipped with well-founded partial orders. The operations fM and
semantic label map 〈〈−〉〉 f have to be weakly monotone morphisms in SetF. Moreover,
here M is only required to be a quasi-model for a CRS, meaning that the interpretation
of the left-hand side of a rule is greater than or equal to (≥) the corresponding right-hand
side.

We define this labelling with quasi-models formally. For f : 〈i1, . . . , il〉 ∈ Σ, we
associate a well-founded poset (S f ,≥S) of semantic labels and a semantic label map
that is a weakly monotone morphism 〈〈−〉〉 f : δi1 M × · · · × δil M - KS f . The labelled
signature Σ is defined by using the semantic label set S f as in Sec. 4. Let (M,≥M) be
a quasi-model for a CRS R. Using the semantic label map and the Σ-monoid M, the
labelled CRS R is also defined by the same as in Sec. 4.3. Moreover, we define the CRS
Decr (called “decreasing rules”) over Σ to consist of the rules

fp(~i1.z1[~i1], . . . , ~i1.zl[~il]) → fq(~i1.z1[~i1], . . . , ~i1.zl[~il])

for all f : 〈i1, . . . , il〉 ∈ Σ and all p >S q ∈ S f . Here each metavariable zk has arity ik
(for 1 ≤ k ≤ l) and >S denotes the strict part of ≥S .

Proposition 12. Let (M,≥M) be a quasi-model for R. If we have rewriting n ` s →R t
on MΣ0n, then for the assignment φ : 0 - M, n ` φL

n s →∗Decr;→R φL
nt holds. Here

“;” denotes the sequential composition of relations.

Theorem 13. Let M be a quasi-model for a CRS R and R the labelled CRS with respect
to M. Then R is terminating if and only if R ∪ Decr is terminating.

Proof. For both directions, we prove contrapositions. [⇐]: By Prop. 12. [⇒]: By eras-
ing all labels in rewrite steps. ut

74 Makoto Hamana

Example 14 (CRS for quick sort). Quick sort algorithm on natural numbers can be
implemented as the CRS R with the standard rewrite rules: if,++, filter, “>”, “≤”.

0 > y → false 0 ≤ y → true
x > 0 → true s(x) ≤ 0 → false
s(x) > s(y) → x > y s(x) ≤ s(y) → x ≤ y
if(true, x, y) → x nil ++ys → ys
if(false, x, y)→ y (x : xs) ++ys→ x : (xs ++ys)

filter(p, nil)→ nil

filter(p, x : xs)→ if(p[x], x : filter(p, xs), filter(p, xs))
qsort(nil)→ nil

qsort(x : xs)→ qsort(filter(a. a ≤ x, xs)) ++((x : nil) ++
qsort(filter(a. a > x, xs)))

Since the argument of qsort in the right-hand side of the last rule (filter(· · ·)) is struc-
turally bigger than the argument of qsort in the left-hand side (x : xs), the General
Schema is not applicable. The higher-order recursive path ordering for the correspond-
ing rewrite system written in the format called Inductive Data Type Systems [BJO02]
also fails [BR01].

Here, we use higher-order semantic labelling with a quasi-model. Let D = N × N∗

with the order 〈n, l〉 ≥ 〈n′, l′〉
def
⇐⇒ n ≥ n′. We use the carrierMk , (Dk → D). The

operations at stage 0 are:

trueM0 = 〈1, ε〉 falseM0 = 〈0, ε〉 0M0 = 〈0, ε〉 sM0 (〈n, l〉) = 〈n + 1, l〉

>M0 (m, n) =
{
〈1, ε〉 if m > n
〈0, ε〉 otherwise ≤M0 (m, n) =

{
〈1, ε〉 if m ≤ n
〈0, ε〉 otherwise

qsortM0
(〈n, l〉) = 〈n, ε〉 ifM0 (b, y, z) =

y if b = 〈1, ε〉
z if b = 〈0, ε〉
〈0, ε〉 otherwise

filterM0 (p, 〈n, l〉) = 〈the number of p(〈i, ε〉) = 〈1, ε〉 for every i in l, ε〉
++M0 (〈n, l〉, 〈n′, l′〉) = 〈n + n′, l · l′〉

nilM0 = 〈0, ε〉 :M0 (〈a, s〉, 〈n, l〉) = 〈n + 1, a · l〉

The operations at stage n > 0 are defined similarly to Example 11. This is indeed a
quasi-model and cannot be a model. We label the function symbol qsort only. The se-
mantic label set S qsort isNwith the usual order. The semantic label map is 〈〈〈n, l〉〉〉qsort

0 =

n, which is weakly monotone. Then, we have the labelled rules:

qsort0(nil)→ nil
qsorti+1(x : xs)→ qsort j(filter(a.a ≤ x, xs)) ++((x : nil) ++

qsortk(filter(a.a > x, xs))) where i + 1 > j, k
qsorti(xs)→ qsort j(xs) for all i > j ∈ N

the General Schema shows termination of the labelled CRS with the precedence qsorti >
qsort j > filter > if,++, “>”, “≤” > nil, :, 0,S, true, false for i > j ∈ N.

Semantic Labelling for Proving Termination of Combinatory Reduction Systems 75

Example 15 (Haskell’s rewrite rule for map/map). Consider the CRS’s rewrite rule
in Example 2. We take the same carrierMn = (Nn → N) as in Example 14. Now the
operation onM is mapM0

: (N → N) × N - N, mapM0
(f , x) = x + 1. TheM is

indeed a quasi-model. We use the semantic label set and semantic label map for map
are S map = N with the usual order, and 〈〈 f , x〉〉map

0 = x, which is weakly monotone. This
gives the labelled rules given in Introduction, hence the original rule terminates.

6 Conclusion

We have given a method of proving termination of higher-order rewrite rules in Klop’s
format called combinatory reduction system (CRS). The method to prove termination,
called higher-order semantic labelling, is an extension of a method known in the theory
of term rewriting. This attaches semantics of the arguments to each function symbol.
We systematically define the labelling by using the complete algebraic semantics of
CRS, Σ-monoids. A key to establish the main theorem of semantic labelling was com-
mutativity of labelling with two kinds of substitutions appearing in formulation of CRS.
We have examined the power of higher-order semantic labelling by several examples
taken from functional programming. This shows usefulness of higher-order semantic
labelling in programming languages.

Acknowledgments. I am grateful to the anonymous referees for useful comments on
improving the presentation of the paper. This work is supported by the JSPS Grant-in-
Aid for Scientific Research (19700006).

References

[Acz78] P. Aczel. A general Church-Rosser theorem. Technical report, University of Manch-
ester, 1978.

[BJO02] F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive data type systems. Theoretical
Computer Science, 272:41–68, 2002.

[BJR08] F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: The end
of a quest. In Proc. of CSL’08, pages 1–14, 2008.

[Bla00] Frederic Blanqui. Termination and confluence of higher-order rewrite systems.
In Rewriting Techniques and Application (RTA 2000), LNCS 1833, pages 47–61.
Springer, 2000.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[BR01] Cristina Borralleras and Albert Rubio. A monotonic higher-order semantic path or-
dering. In Procs. 8th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR), LNCS 2250, pages 531–547, 2001.

[dB72] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the church-rosser theorem. Indagationes
Mathematicae, 34:381–391, 1972.

[DR98] O. Danvy and K.H. Rose. Higher-order rewriting and partial evaluation. In Rewriting
Techniques and Applications, 9th International Conference, (RTA’98), LNCS 1379,
1998.

76 Makoto Hamana

[FPT99] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc. 14th
Annual Symposium on Logic in Computer Science, pages 193–202, 1999.

[Ham04] M. Hamana. Free Σ-monoids: A higher-order syntax with metavariables. In Asian
Symposium on Programming Languages and Systems (APLAS 2004), LNCS 3302,
pages 348–363, 2004.

[Ham05] M. Hamana. Universal algebra for termination of higher-order rewriting. In Pro-
ceedings of 16th International Conference on Rewriting Techniques and Applications
(RTA’05), LNCS 3467, pages 135–149. Springer, 2005.

[Ham07] M. Hamana. Higher-order semantic labelling for inductive datatype systems. In Ninth
ACM-SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’07), pages 97–108, 2007.

[JR06] J.-P. Jouannaud and A. Rubio. Higher-order orderings for normal rewriting. In Proc.
of RTA’06, LNCS 4098, pages 387–399, 2006.

[JR07] J.-P. Jouannaud and A. Rubio. Polymorphic higher-order recursive path orderings.
Journal of ACM, 54(1), 2007.

[JTH01] S. P. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as a practical
optimisation technique in GHC. In Haskell Workshop 2001, 2001.

[Klo80] J.W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, Amsterdam, 1980.
volume 127 of Mathematical Centre Tracts.

[KOR93] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems:
Introduction and survey. Theor. Comput. Sci., 121(1&2):279–308, 1993.

[Mac71] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1971.

[Nip91] T. Nipkow. Higher-order critical pairs. In Proc. 6th IEEE Symp. Logic in Computer
Science, pages 342–349, 1991.

[Pol94] J. van de Pol. Termination proofs for higher-order rewrite systems. In the First Inter-
national Workshop on Higher-Order Algebra, Logic and Term Rewriting (HOA’93),
LNCS 816, pages 305–325, 1994.

[Raa01] F. van Raamsdonk. On termination of higher-order rewriting. In Rewriting Techniques
and Applications, 12th International Conference (RTA 2001), pages 261–275, 2001.

[Ter03] Terese. Term Rewriting Systems. Number 55 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[Zan95] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Infor-
maticae, 24(1/2):89–105, 1995.

A Appendix

A.1 Proof of Lemma 8

By induction on meta-terms in MΣZ. The cases x and f (~s) ∈ MΣZn are straightforward.
For the case z[~t] ∈ MΣZn, we have the following.

lhs = φLθ∗(z[~t])

= φLβ(θz; θ∗~t) = βφ(φ
Lθz; φLθ∗~t) (by Lemma 7)

rhs = (φLθ)∗(φ∗θ)Lz[~t]

= (φLθ)∗z[(φ∗θ)L~t]

= βφ(φ
Lθz; (φLθ)∗(φ∗θ)L~t)

= βφ(φ
Lθz; φLθ∗~t) = lhs (by I.H.)

Semantic Labelling for Proving Termination of Combinatory Reduction Systems 77

A.2 Proof of Proposition 9

By induction on proof trees of →R. Since R is structural, it suffices to consider the
following two cases [Ham05].

(i) Case n ` θ∗nl→R θ∗nr.
This is derived from Z ` ~n.l → ~n.r ∈ R where θ : Z - MΣ0. Let φ : 0 - M
be the assignment. Now we have a labeled rule

(φ∗θ)L
nl→ (φ∗θ)L

nr ∈ R.

By Lemma 8 and closedness of R-rewrite by the valuation φLθ : Z - MΣ0, we
have

φL
n(θ∗nl) = (φLθ)

∗
n(φ∗θ)L

nl →R (φLθ)
∗
n(φ∗θ)L

nr = φL
n(θ∗nr)

(ii) Case n ` f (. . . , n +~i.s, . . .)→R f (. . . , n +~i.t, . . .).
This is derived from n + i ` s →R t. Since M is a model, notice φ∗n+is = φ

∗
n+it. By

induction hypothesis, we have φL
n+is→R φL

n+it. So,

φL
n(f (. . . , n +~i.s, . . .))

= f〈〈...,φ∗n+i s,...〉〉n (. . . , n +~i.φL
n+is, . . .)

= f〈〈...,φ∗n+it,...〉〉n (. . . , n +~i.φL
n+is, . . .)

→R f〈〈...,φ∗n+it,...〉〉n (. . . , n +~i.φL
n+it, . . .)

= φL
n(f (. . . , n +~i.t, . . .))

A.3 Proof of Proposition 12

By induction on proof trees of→R.

(i) Case n ` θ∗nl→R θ∗nr. This case is proved by the same as in the proof of Prop. 9.
(ii) Case n ` f (. . . , n + i.s, . . .)→R f (. . . , n + i.t, . . .)

This is derived from n + i ` s →R t. Since (M,≥M) is a quasi-model, we have
φ∗n+is ≥M(n+i) φ

∗
n+it. By induction hypothesis, we have φL

n+is →∗Decr;→R φL
n+it. No-

tice also that 〈〈−〉〉 is weakly monotone. So,

φL
n(f (. . . , n + i.s, . . .)) = f〈〈...,φ∗

n+~i
s,...〉〉

n
(. . . , n +~i.φL

n+is, . . .)

→∗Decr f〈〈...,φ∗n+it,...〉〉n (. . . , n +~i.φL
n+is, . . .)

→∗Decr;→R f〈〈...,φ∗n+it,...〉〉n (. . . , n +~i.φL
n+it, . . .)

= φL
n(f (. . . , n +~i.t, . . .))

78 Makoto Hamana

A.4 Structural CRSs as Typed CRSs

In [Bla00], Blanqui defined a version of higher-order rewriting format Inductive Data
Type Systems (IDTS), which he called “new definition of IDTS” ([Bla00] Def. 1). We
call his “new definition of IDTS” typed CRS since as mentioned in his paper, it is a
simply-typed version of CRS. Blow we show that our structural CRSs is a subclass of
Blanqui’s typed CRSs. Hence we can apply General Schema for typed CRSs given in
[Bla00] to structural CRSs to show termination of structural CRSs.

To give a typed CRSs, the following alphabet A ([Bla00] Def. 1) is required. In
typed CRSs, types are simple types generated by the base types. (i) a set of base types,
(ii) type-indexed collection of variables, (iii) type-indexed collection of function sym-
bols, (iv) type-indexed collection of metavariables. Then the set of all meta-terms of a
typed CRS is constructed fromA, and a typed CRS is a set of pairs of meta-terms.

Suppose that a structural CRS (Σ,R) using a N-indexed set Z of metavariables is
given. We show that this gives rise to the following alphabet A and typed CRS. We
assume the only base type ι and all variables (now, natural numbers) have the base type.
For each function symbol f : 〈i1, . . . , il〉 ∈ Σ, we assign to the type f : ιi1 , . . . , ιil → ι
where ιi = (ι → · · · → ι) → ι (the part (ι → · · · → ι) denotes i-times ι). For each
metavariable z of arity n in Z, we associate a metavariable z in A of the type ιn → ι.
Then, the set of all structural meta-terms

⋃
k∈N MΣZ(k) is equal to the set of all meta-

terms of typed CRS given in [Bla00] under this alphabetA. Thus, the structural CRS R
is a typed CRS. Valuations and generation of a rewrite relation for structural CRSs also
fit into those of typed CRS version.

