Higher-Order Semantic Labelling for Inductive Datatype Systems

Makoto Hamana

Gunma University/University of Tokyo Japan

PPDP'07 14th July, 2007.

Intro: Termination Proof by Syntactic Method

Term Rewriting System (TRS) \mathcal{R} :

$$fact(s(x)) o fact(x) * s(x)$$

$$fact > * > s > 0$$

Intro: Semantic Labelling for TRSs [Zantema'95]

Original TRS \mathcal{R} :

$$egin{aligned} fact(s(x)) &
ightarrow fact(p(s(x))) *s(x) \ &p(s(0))
ightarrow 0 \ &p(s(s(x)))
ightarrow s(p(s(x))) \end{aligned}$$

► RPO doesn't work

Semantics: Σ -algebra $(\mathbb{N}, \{fact_{\mathbb{N}}, s_{\mathbb{N}}, p_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}, \cdots\})$

Labelled TRS $\overline{\mathcal{R}}$:

$$egin{aligned} fact_{i+1}(s(x)) &
ightarrow fact_i(p(s(x))) *s(x) \ &p(s(0))
ightarrow 0 \ &p(s(s(x)))
ightarrow s(p(s(x))) \end{aligned}$$

► RPO works!

Th. [Zantema'95] TRS $\overline{\mathcal{R}}$ is terminating $\Rightarrow \mathcal{R}$ is terminating.

This Work

- About higher-order term rewriting
- ▶ Inductive Data Type Systems (IDTSs)
 & Termination criteria: the General Schema
 [Blanqui, Jouannaud, Okada TCS'02, RTA'00]
- Difficulty: what is a suitable semantic structure for labelling higher-order rewriting systems?
 - > Contribution:
 - i. Answer
 - ii. Higher-order semantics labelling
 - iii. Applications

Inductive Data Type Systems

[Blanqui, Jouannaud, Okada RTA'00, TCS'02]

Features:

- > Rewrite rules on higher-order terms
- ▷ Simple types (up to 2nd-order in this work)
- ▶ Inductive types (by conditions of types of constructors)
- ▶ Metavariables with arities and substitutions, e.g.

$$\operatorname{ap}(\lambda(x.M(x)),N) o M(N)$$

Idea: Attach Semantics of Arguments in Rewrite Rules

Original
$$\mathcal R$$
 $f(l) o g(\cdots f(t)\cdots)$ ψ Labelled $\overline{\mathcal R}$ $f_{\llbracket l \rrbracket
ho}(l') o g(\cdots f_{\llbracket t \rrbracket
ho}(t')\cdots)$

$$(M,\geq):$$
 quasi-model $(orall (l
ightarrow r) \in \mathcal{R}. \ [\![l]\!]
ho \geq [\![r]\!]
ho)$ $ho: X
ightarrow M$ valuation $[\![-]\!]: T_\Sigma X
ightarrow M$

What Kind of Semantics for Higher-Order Labelling?

- > TRS: (1st-order) Universal algebra
- ▶ IDTS: ?? Higher-order version of universal algebra
- Semantics of Higher-order Rewrite Systems by van de Pol [HOA'93]: hereditary monotone functionals, but not complete for termination. The term model is not a model.

What Kind of Semantics for Higher-Order Labelling?

$$s \to_{\mathcal{R}} t$$

Semantic labels must reflect:

> contexts

$$g_{\llbracket s
rbracket}(\ s'\)
ightarrow_{\overline{\mathcal{R}}} g_{\llbracket t
rbracket}(\ t'\)$$

> binders

$$\lambda_{\llbracket s
rbracket_x}(x.\;s'\;)
ightarrow_{\overline{\mathcal{R}}}\lambda_{\llbracket t
rbracket_x}(x.\;t'\;)$$

> substitutions

$$\mathsf{map}(x.F(x),\mathsf{cons}(M,N)) \ o_{\mathcal{R}} \ \mathsf{cons}(F(M),\cdots)$$

$$\cdots
ightarrow_{\overline{\mathcal{R}}}$$
 cons $_{\llbracket F
rbracket{ \llbracket M
rbracket{ \rrbracket}}}(F(M),\cdots)$

What Kind of Semantics for Higher-Order Labelling?

- \triangleright Models of λ -calculus?
- \triangleright But λ -algebra doesn't satisfy ξ -rule in general [Plotkin JSL'74]

$$\frac{M = N}{\lambda x. M = \lambda x. N}$$

- \triangleright Right framework: binding algebras and Σ -monoids [Fiore, Plotkin, Turi LICS'99] with order structure
- \triangleright Σ -monoid = Σ -algebra + monoid
- \triangleright Free Σ -monoid = higher-order syntax with metavariables [Hamana APLAS'04]
- ▷ Algebraic semantics of higher-order rewriting [Hamana RTA'05]
- > Typed binding algebra [Fiore PPDP'02]

Semantic Labelling

- hd An assignment $\phi: Z \longrightarrow M$ into a quasi-model

$$\phi^{\mathsf{L}}(x) = x$$
 $\phi^{\mathsf{L}}(\mathsf{Z}(ec{t})) = \mathsf{Z}(\phi^{\mathsf{L}}ec{t})$
 $\phi^{\mathsf{L}}(f(t_1,\ldots,t_l)) = f_{\langle\!\langle \phi^*(t_1),\ldots,\phi^*(t_l)
angle\!
angle}^f(\phi^{\mathsf{L}}t_1,\ldots,\phi^{\mathsf{L}}t_l)$

> Labelling

Free
$$\Sigma$$
-monoid terms $M_\Sigma Z$ $l o r \in \mathcal{R}$ Σ -m.m. labelling map ϕ^{L} \downarrow \downarrow \downarrow Σ -monoid labelled terms $M_{\overline{\Sigma}} Z$ $\phi^{\mathsf{L}}(l) o \phi^{\mathsf{L}}(r) \in \overline{\mathcal{R}}$

labelled IDTS

Higher-Order Semantic Labelling

> Proposition

> Th. [Higher-order semantic labelling]

IDTS $\overline{\mathcal{R}} \cup$ Decr is terminating $\Rightarrow \mathcal{R}$ is terminating.

"Decreasing rules" Decr

$$f_p(\mathbf{z}_1,\ldots,\mathbf{z}_l) \rightarrow f_q(\mathbf{z}_1,\ldots,\mathbf{z}_l)$$

for all labels p > q

Application 1: Simply-Typed λx -calculus [Bloo,Rose'95]

This doesn't follow the General Schema:

▶ Labels help!
 Semantics . . . simply typed _terms evaluating all excepts.

Semantics \cdots simply typed λ -terms evaluating all ex. subst.

Application 1: Simply-Typed λx -calculus

> Labelled rules

$$\mathsf{ap}_{(\lambda x.s)t}(\lambda(x.M(x)),N) o M(x)\langle x:=N
angle_{s[x:=t]}$$
 $(\mathsf{ap}_{s\,t}(M(x),N(x)))\langle x:=K
angle_{st[x:=u]} o \mathsf{ap}_{st[x:=u]}(\cdots)$

Precedence:
$$\operatorname{ap}_s > -\langle -:=-\rangle_t > \operatorname{ap}_t > \lambda$$
 for $s \ (\to_\beta \cup \triangleright)^* \ t$

- \triangleright Point: λ -terms form a quasi-model of λ x-calculus
- \triangleright NB. Not a termination model (i.e. not giving '>') but useful

Application 2: Labelling with Term Model

- $hd ag{Take the full term model } (T_\Sigma\! V, (\to_\mathcal{R} \cup \rhd)^*)$

Def. [Middeldorp, Ohsaki, Zantema CADE'96]

A 1st-order TRS \mathcal{R} is precedence terminating

if ∃ well-founded order ("precedence") s.t.

$$f(ec{t})
ightarrow r \in \mathcal{R}, \quad f > orall g \in \operatorname{\mathsf{Fun}}(r)$$

Prop. \mathcal{R} SN \Leftrightarrow term labelled $\overline{\mathcal{R}} \cup \text{Decr}$ precedence terminating

- → TRS ok [MOZ'96]
- ▶ IDTS fails subterm property is not closed under substitutions
- > Solid IDTS ok new notion

Solid IDTS

- **Def.** A term t is solid if for each $\mathbf{z}(s_1,\ldots,s_n)$ in t, all s_i do not contain function symbols
- **Def.** IDTS \mathcal{R} is solid if
- i. \mathcal{R} consists of solid terms only
- ii. (about strictly positive inductive types and accessibility of variables)

Example

- i. $\operatorname{ap}(\boldsymbol{\lambda}(x.M(x)),N) o M(N)$
- ii. λ x-calculus
 - **Prop.** Solid IDTS \mathcal{R} SN \Leftrightarrow $\overline{\mathcal{R}} \cup$ Decr precedence terminating

Application 3: Modularity with HO-RPS

HO Recursive Program Schema (RPS)

$$f(x_1\ldots x_{i_1}. ext{Z}_1(x_1,\ldots,x_{i_1}),\ \ldots) \ o \ t$$

Th. Termination is modular for the disjoint union of solid IDTS and solid HO-RPS.

Proof Labelling with a term model given by normal forms of HO-RPS and show precedence termination.

Summary

- \triangleright Higher-order semantic labelling for IDTSs using Σ -monoids
- \triangleright Applications: λx , modularity
- Introduction of solid property
 - Reasonable extension of FO case

Note

- ▷ Signature extension doesn't preserve SN for HO rewriting
- > But solid case is ok

Why fails?

- Consider labelling with a term model
- Need to establish the property

$$rac{f(l)
ightarrow r\in \mathcal{R}}{f_{f(l) heta}(l)
ightarrow r\in \overline{\mathcal{R}}}$$
 $f(l) heta
ightarrow_{\mathcal{R}}r heta riangleq t heta$ for $r riangleq t$

Take the order on labels: $(\rightarrow_{\mathcal{R}} \cup \triangleright)^*$

- TRS ok
- IDTS NG, since

$$\mathbf{z}(f) \, \triangleright \, f \ \Rightarrow \ c \not \triangleright f \$$
 by $\mathbf{z} \mapsto c$

Σ-monoids [Fiore, Plotkin, Turi'99]

A Σ -monoid consists of

- riangledown a monoid object $M=(M,\eta,\mu)$ in the monoidal category $(\mathbf{Set}^\mathbb{F},ullet,\mathbf{V})$ ("substitution prod.") with
- $hd \$ a Σ -binding algebra $lpha:\Sigma M o M$ such that

commutes.