Higher-Order Semantic Labelling for
Inductive Datatype Systems

Makoto Hamana

Gunma University/University of Tokyo
Japan

PPDP'07
14th July, 2007.

1

Intro: Termination Proof by Syntactic Method

Term Rewriting System (TRS) R.:
fact(s(x)) — fact(x) * s(x)

> Recursive path ordering (RPO) [Dershowitz TCS’'82]
proves termination (= SN) by using the precedence

fact > x> s >0

Intro: Semantic Labelling for TRSs [Zantema'95]

Original TRS R.:

fact(s(xz)) — fact(p(s(x))) * s(x)
p(s(0)) — 0
p(s(s(z))) — s(p(s(x)))
» RPO doesn’t work
Semantics: X-algebra (N, {facty, sy, Py : N — N, . -})
Labelled TRS R:

fact;11(s(x)) — fact;(p(s(x))) * s(x)
p(s(0)) — 0
p(s(s(x))) — s(p(s(z)))

» RPO works!

Th. [Zantema’95] TRS R is terminating = TR is terminating.
3

T his Work

> About higher-order term rewriting

> Inductive Data Type Systems (IDTSs)
& Termination criteria: the General Schema
Blanqui,Jouannaud,Okada TCS'02, RTA'00]

> Difficulty: what is a suitable semantic structure for
abelling higher-order rewriting systems?

> Contribution:
. Answer
ii. Higher-order semantics labelling

iii. Applications

Inductive Data Type Systems

[Blanqui,Jouannaud,Okada RTA'00, TCS'02]

Features:
> Rewrite rules on higher-order terms
> Simple types (up to 2nd-order in this work)
> Inductive types (by conditions of types of constructors)

> Metavariables with arities and substitutions, e.g.

ap(AMx.M(x)), N) — M(N)

Idea: Attach Semantics of Arguments in Rewrite Rules

Original R f) —g(--f(@)---)
Y

Labelled R f[l]]p(l,) — g(- .. fl[t]]p(-[;’) .)

(M, >) : quasi-model (VI — r) € R. [l]p = [r]p)
p: X — M valuation
[—] : IT=X — M

What Kind of Semantics for Higher-Order Labelling?

TRS: (1st-order) Universal algebra
IDTS: 7?7 Higher-order version of universal algebra

Semantics of Higher-order Rewrite Systems by van de Pol
[HOA'93]: hereditary monotone functionals,

but not complete for termination.

The term model is not a model.

Need to satisfy several requirements

What Kind of Semantics for Higher-Order Labelling?

s — >Rt
Semantic labels must reflect:

> contexts
gs1(s’) =z gpg(t)

> binders
)\[[S]] (. s’)—> A[[t]] (. t')

> substitutions
map(z.F(x),cons(M, N)) —r cons(F(M),---)
g

—3R COﬂS[[F]][[M]](F(M), ..)

What Kind of Semantics for Higher-Order Labelling?

Models of A-calculus?

But A-algebra doesn’t satisfy &-rule in general [Plotkin JSL'74]

M = N
Axe. M = Ax.N

Right framework: binding algebras and Y-monoids
[Fiore,Plotkin, Turi LICS'99] with order structure

Y:-monoid = X>:-algebra + monoid

Free X-monoid = higher-order syntax with metavariables
[Hamana APLAS'04]

Algebraic semantics of higher-order rewriting [Hamana RTA'05]

Typed binding algebra [Fiore PPDP’'02]

O

Semantic Labelling

> An assignment ¢ : Z —— M into a quasi-model

> Labelling map ¢- : MsZ —— MxZ

¢-(x) = @
¢ (2(8) = 2(¢"F)
G (F (153 t)) = Fipm(on),npmyn? (@ tise-os 1)
> Labelling
Free 3>-monoid terms MsZ Il —-r€eR
>-m.m. labelling map qul I

>-monoid labelled terms MsZ c/)L(l) — c/;"(r) ER
labelled IDTS

10

Higher-Order Semantic Labelling

> Proposition
terms N0 s —->r t
labelling map qsLl I
labelled terms M0 ¢ (8) —hes—7 ¢ (1)

> Th. [Higher-order semantic labelling]
IDTS R U Decr is terminating = 7R is terminating.

> ‘“Decreasing rules” Decr
Fo(Z1y.--s21) — fq(Z1y-..,72)

for all labels p > ¢q

11

Application 1: Simply-Typed Ax-calculus [Bloo,Rose’95]

(Axe. M)N — M{x := N)

Ay M){x := K) — Ay.M{(x := K) if € # y
x{x := K) —» K
M{x:=K) — M if e & FV(M)

> This doesn’'t follow the General Schema:
?? Q> —(—:= —) —(— = =) > @

> Labels help!
Semantics - .- simply typed A-terms evaluating all ex. subst.

12

Application 1: Simply-Typed AXx-calculus

(Axe. M)N — M {x := N)
(MN){(x := K) — M{(x := K) N{(x := K)

(Ay.M){(x := K) — Ay.M{(x := K) ifx #y
x(x := K) > K
M{x:=K) - M if ¢ & FV(M)

Labelled rules
aP(az.s)t (MA@ M(x)), N) — M(z)(x := N)s[z:=t]
(aps (M (x), N(x))){(x := K)stjaw:=u] —> APstjw:=u] (" *)
Precedence: apg > —(— = —)¢ > apy > A for s (—mpUD>)™t
This follows the General Schema, hence SN
Point: A-terms form a quasi-model of Ax-calculus

NB. Not a termination model (i.e. not giving '>") but useful
13

Application 2: Labelling with Term Model

> Example: Ax-calculus
> (Restricted) term model is a typical model
> Take the full term model (TsV, (—r U>)*)

Def. [Middeldorp,Ohsaki,Zantema CADE’'96]
A 1st-order TRS R is precedence terminating
if 3 well-founded order (‘“precedence”) s.t.

f@) - rE€R, f>VgéEFun(r)

Prop. R SN <& term labelled R U Decr precedence terminating
> TRS ok [MOZ'96]
> IDTS fails — subterm property is not closed under substitutions

> Solid IDTS ok new notion
14

Solid IDTS

Def. A term t is solid if for each z(s1y...,8n) in t,
all s; do not contain function symbols

Def. IDTS R is solid if

i. TR consists of solid terms only

ii. (about strictly positive inductive types and accessibility of variables)
Example

i. ap(AN(x.M(x)), N) — M(N)

il. AX-calculus

Prop. Solid IDTS R SN <« TR U Decr precedence terminating

15

Application 3: Modularity with HO-RPS

HO Recursive Program Schema (RPS)

f(e1... @i 21(15 0o ey ®iy)y «o0) — T

Th. Termination is modular for the disjoint union of
solid IDTS and solid HO-RPS.

Proof Labelling with a term model given by normal forms of
HO-RPS and show precedence termination.

16

Summary

> Higher-order semantic labelling for IDTSs using >-monoids
> Applications: AxX, modularity

> Introduction of solid property

- Reasonable extension of FO case
Note
> Almost no property is modular for HO rewriting [van Oostrom’05]
> Signature extension doesn't preserve SN for HO rewriting

> But solid case is ok

17

Why fails?

> Consider labelling with a term model

> Need to establish the property

f) =reRrR
frappl) =1 €R
f(He —r ro>to for» >t

Take the order on labels: (—xr UD)*
- TRS ok
- IDTS NG, since

W(fF) > f = cPf by z — ¢

18

>:-monoids [Fiore,Plotkin, Turi'99]

A Y -monoid consists of

> a monoid object M = (M, n,)
in the monoidal category (Set”, e, V) (“substitution prod.”) with

> a X-binding algebra ¢« : XM — M such that
st 2
S(IM)e M —3X(M e M) — XM

oe M o

Y

M e M

é

commutes.

10

