Inductive Cyclic Sharing
Data Structures

Makoto Hamana

Department of Computer Science,
Gunma University, Japan

30th, June, 2008
http://www.cs.gunma-u.ac.jp/ "hamana/

1

T his Work

> How to inductively capture cylces and sharing
> Intend to apply it to functional programming

> Strongly related to

— Masahito Hasegawa,
Models of Sharing Graphs: A Categorical Semantics of let and letrec,
PhD thesis, University of Edinburgh, 1997.

Introduction

> Term is a convenient and concise representation of tree structures
in theoretical computer science and logics.

(i) Reasoning: structural induction

(ii) Functional programming: pattern matching,
structural decomposition/composition

(iii) Representable by inductive datatypes
(iv) Initial algebra property

> In other areas: adjacency lists, adjacency matrices, pointer structures in
C, etc. more complex, not intuitive, difficult to manage

> But ...

Introduction

> How about ‘tree-like” structures?

> How can we represent this data in functional programming?
> Give up to use pattern matching, composition, structural induction

> Not inductive

Introduction

Are really no inductive structures in tree-like structures?

> “Almost’ a tree

Graph-Theoretic Observation

> Instead, regard it as

- o -

-
’—
-

__---.

-

Depth-First Search tree

> DFS tree consists of 3 kinds of edges:

(i) Tree edge
(ii) Back edge
(iii) Right-to-left cross edge

> Characterise pointers for back and cross edges
6

T his Work

» Cyclic Data Structures
(i) Syntax: p-terms
(ii) Implementation: nested datatypes in Haskell
(iii) Semantics: domains and traced categories

(iv) Application: A syntax for Arrows with loops

> Cyclic Sharing Data Structures
(i) New pointer notation
(ii) Translation: = Equational term graphs = Cyclic sharing theories
(iii) Semantics: cartesian-center traced monoidal categories

(iv) Graph algorithms: SCC

I. Cyclic Data Structures

Idea

> A syntax of fixpoint expressions by p-terms is widely used

> Consider the simplest case: cyclic lists

A 2
5 P 6

> This is representable by
px.cons(5, cons(6, x))

> But: not the unique representation

px. py.cons(5, cons(6, x))
px.cons(5, py.cons(6, pz.x))
px.cons(5, cons(6, pax.cons(5,cons(6,x))))

All are the same in the equational theory of u-terms.

> Thus: structural induction is not available

Idea

> p-term may have free variable considered as a dangling pointer

cons(6, x)

v

6

“incomplete” cyclic list

> To obtain the unique representation of cyclic and incomplete cyclic lists,
always attach a p-binder in front of cons:

pxy.cons(5, pxs.cons(6,xy))
seen as uniform addressing of cons-cells

No axioms

Inductive

v V. VvV V

Initial algebra for abstract syntax with variable binding

by Fiore, Plotkin and Turi [1999]
10

Cyclic Signature and Syntax

> Cyclic signature X
nil®, cons(m, —)(1) for each m € Z

T,y Fx

x F py.cons(6,)

- pax.cons(5, py.cons(6, x))

> De Bruijn notation:
- cons(5, cons(6, 72))

> Construction rules:

1<i<mn fFE ey n41kt; ---n+1kFt

n T2 nt f(ty,...,tr)

11

Cyclic Lists as Initial Algebra

>

F: category of finite cardinals and all functions between them
Def. A binding algebra is an algebra of signature functor on Set”

E.g. the signature functor X : Set” — Set" for cyclic lists
SA=1+7Zx A(—+1)

The presheaf of variables: V(n) =n

The initial V4+3-algebra (C, in: V4+XC — C)

Cn)=2n+1+4+2xC(n+1) for each n € N

C'(n): represents the set of all incomplete cyclic lists possibly containing
free variables {1,...,n}

C'(0): represents the set of all complete (i.e. no dangling pointers) cyclic
lists

12

Cyclic Lists as Initial Algebra

> Examples

12 € C(2)
cons(6,72) € C(1)
cons(5, cons(6,72)) € C(0)

> Destructor:
tail : C(n) — C(n + 1)
tail(cons(m,t)) =t
Idioms in functional programming: map, fold

How to follow a pointer: Huet's Zipper

But: following a pointer Tn needs n-step backward Zipper operations

v V. VvV V

One of the benefits of pointer is efficiency

— want: constant time dereference
13

Cyclic Data Structures as Nested Datatypes

> Diving into Haskell

> Implementation: Inductive datatype indexed by natural numbers

data Zero
datalncrm = One|Sn
data CList n = Ptrn
| Nil
| ConsInt (CList (Incr n))
> cf. Cn)=2n+1+2ZxC(n+1)
> Examples
S One :: CList (Incr (Incr Zero))
Cons 6 (S One) :: CList (Incr Zero)

Cons 5 (Cons 6 (S One)) :: CList Zero

14

Cyclic Lists to Haskell's Internally Cyclic Lists

> Translation

tra :: CListn — [[Int]] — [Int]

tra Nil ps = []
tra(Consaas) ps = letx = a: (traas(z:ps)) inx
tra (Ptr 1) ps = nth ¢ ps

> The accumulating parameter ps keeps a newly introduced pointer x by let

v
5| +—» 6

> Example
tra (Cons 5 (Cons 6 (Ptr (S One)))) []

= 5:6:5:6:5:6:5:6:5:6: ---

> Makes a true cycle in the heap memory, due to graph reduction
> Constant time dereference

> Better: semantic explanation — to more nicely understand tra
15

Domain-theoretic interpretation

> Semantics of cyclic structures has been traditionally given as their infinite
expansion in a cpo

> Fits into nicely our algebraic setting

> CPppPoO : cpos and strict continuous functions
Cppo : cpos and continuous functions

16

Domain-theoretic interpretation

> Let X be the cyclic signature for lists
nil®, cons(m, —)(1) for each m € Z.
> The signature functor 37 : Cppo; — Cppo, is defined by
(X)) =1, @ Z,1, X1

> The initial Xi-algebra D is a cpo of all finite and infinite possibly partial
lists

> Define a clone (D, D) € Set" by
(D,D), = [D™,D]= Cppo(D",D)

> The least fixpoint operator in Cppo: fix(F) = | |,y F*(L)

> (D, D) can be a V4 3X-algebra

[[_]] : 0 — <D7D>

17

Domain-theoretic interpretation

> The unique homomorphism in Set”
[[_]] : 0 — (Dv D>
[nil],, = AO.nil
[z.cons(m, t)],, = AO.fix(Ax.cons®” (m, [t], 1 (©,x))
[2],, = AO.7.(O)

> Example of interpretation
[11z.cons(5, py.cons(6, x))],(e) = fix(Az.cons® (5, fix(Ay.cons® (6, 7 (x, y)))
= fix(\x.cons” (5, cons” (6, x))

= cons(5, cons(6, cons(5, cons(6, . ..

tra :: ClLista — [[Int]] — [Int]

tra Nil ps = []
tra(Consaas) ps = letx = a: (traas (x: ps)) inx
tra (Ptr 1) ps = nth i ps

18

Interpretation in traced cartesian categories

> A more abstract semantics for cyclic structures in terms of
traced symmetric monoidal categories [Hasegawa PhD thesis, 1997]

> Let C be an arbitrary cartesian category having a trace operator Tr
[n b px.f(ty,...,te)] = TT'D(A offlso(ln+1Fti],...,[n+ 1 F t1]))

> T his categorical interpretation is the unigue homomorphism
[[—]] : C — (D, D)

to a V+3X-algebra of clone (D, D) defined by (D, D),, = C(D"™, D)

> Examples
(i) C = cpos and continuous functions

(ii) C = Freyd category generated by Haskell's Arrows

10

Application: A New Syntax for Arrows

> Arrows [Hughes'00] are a programming concept in Haskell to make a
program involving complex “wiring” -like data flows easier

l reset

[CONST 0]—»[COND } "“1 >
R

> Example: a counter circuit

INC
next'—| DELAY 0 | |
newtype SeqMap b ¢ = SM (Seq b -> Seq c)
data Seq b = SCons b (Seq b)
counter :: SeqMap Int Int
counter = proc reset -> do —- Paterson’s notation [ICFP’01]

rec output <- returnA -< if (reset==1) then 0 else next
next <- delay 0 -< output+l

returnA -< output

fa¥a
ZUJ

Application: A New Syntax for Arrows

> Paterson defined an Arrow with a loop operator called ArrowLoop

class Arrow _A => ArrowLoop _A where
loop :: _A (b,d) (c,d) > _Abc

> Arrow (or, Freyd category)
is a cartesian-center premonoidal category [Heunen, Jacobs, Hasuo'06]

> ArrowlLoop
is a cartesian-center traced premonoidal category [Benton, Hyland’'03]

> Cyclic sharing theory is interpreted
in a cartesian-center traced monoidal category [Hasegawa'97]

> What happens when cyclic terms are interpreted as Arrows with loops?

21

Application: A New Syntax for Arrows

> Term syntax for ArrowlLoop

> Example: a counter circuit

l reset

[CONSTO]—»[COND] "“1 >
— 4 | mc |

next—{ DELAY 0 | '

> Intended computation
px.Cond(reset, Const0, DelayO(Inc(x)))

where reset is a free variable

> term :: Syntx (Incr Zero)
term = Cond(Ptr(S One),Const0,DelayO0(Inc(Ptr(S(S One)))))

29

Translation from cyclic terms to Arrows with loops

tl ::

tl
tl
tl
tl
tl

(Ptr i) =
(ConstO0) =
(Inc t) =
(DelayO t) =
(Cond (s,t,u)) =

(Ctx n, ArrowSigStr _A d) => Syntx n -> _A [d] d

arr (\xs -> nth i xs)

loop (arr dup
loop (arr dup
loop (arr dup
loop (arr dup

<< (%1

<<< const0 <<< arr (\(xs,x)->0)))
<<< inc <<< tl t <<< arr supp)
<K< delay0 <<< tl t <<< arr supp)
<<< cond <<< arr(\((x,y),z)—>(,y,z))
s &&& tl t) &&& tl u <<< arr supp)

This is the same

as Hasegawa’'s

Define an Arrow by term

interpretation of cyclic sharing structures

term = Cond(Ptr(S One),Const0,Delay0(Inc(Ptr(S(S One)))))

counter’ :: SeqMap Int Int

counter’ = tl term <<< arr (\x->[x])

23

Simulation of circuit

> Let test_input be
(1) reset (by the signal 1),
(2) count +1 (by the signal 0),
(3) reset,
(4) count +1,
(5) count +1, ...

test_input = [1,0,1,0,0,1,0,1]
runl = partRun counter test_input -- original

run2 = partRun counter’ test_input -- cyclic term

In Haskell interpreter

> runl
[0,1,0,1,2,0,1,0]

> run?2
[0,1,0,1,2,0,1,0]
24

Summary

> Inductive characterisation of cyclic sharing terms
> Semantics
> Implementations in Haskell

> Good connections between semantics and functional programming

(i) Cartesian-center traced monoidal categories [Hasegawal]
» Cyclic Sharing Data Structures with constant time dereference

(ii) Monads [Moggi] » Effects [Wadler]

(iii) Freyd categories [Power, Robinson] » Arrows [Hughes]

> Cyclic Sharing Data Structures — more challenging, more interesting
(i) New pointer notation
(ii) Translation: = Equational term graphs = Cyclic sharing theories
(iii) Semantics: cartesian-center traced monoidal categories

(iv) Graph algorithms: SCC
o5

II. Cyclic Sharing Data Structures

26

Cyclic Sharing Data Structures

> Sharing via cross edge

3

- - gy
- "~

> Term
px.bin(py; .bin(pz.bin(Tx, 1F(6)), . 1Ty1),1f(9)) : B(B(B(P,L),P),L)

> New construct: pointer plx (p:position, in addition to Tx)
> Inductive type indexed by shape trees

> Exactly implemented by GADT in Haskell
37

Translation of Cyclic Sharing Terms

> Semantics
> ToO get constant time dereference

> Translations

Cyclic Sharing attPos Cyclic Sharing tre trc Has. .
Terms Terms with pos. ETG > CST > ('7: :C — 8)

> Cartesian-center traced symmetric monoidal category (F : C — Hask)

> Example of translation

28

px.bin(pyy.bin(pz.bin(Tx, If(6)), . 1Ty1), If(9))

=" bin(bin(bin(13, 1f(6)), .111), If (9))
Ay bin. (biny (bini1 (T1113, 1.112(6)), ./ 1T12 1), If2(9))
{e | € = bin(1, 2)
1 = bin(11,12)
11 = bin(111, 112)
kil 12 =11
111 =
112 = If(6)
2 =If(9)}
Aald letrec (¢,1,11,12,111,112, 2)
= (bin(1, 2), bin(1, 12), bin(111, 112), 11, ¢, If (6), If (9)) in €
F(A); (id® TrP (FA7; ([e,1,... F bin(1,2)]®
Hasegawa [e,1,... F bin(11,12)]®

20

Graph Algorithm:

Strong Connected Components

3 11
7 10 11

30)

Graph Algorithm: Computing SCC

Strong Connected Components

7 10

11

11

> The number described in a node is a DFS number.

> The number labelled outside of a node is lowlink.

> A gray node is the root of a scc

31

SCC: Tarjan’s Algorithm in Haskell

scc :: HTree -> [[Labl]
scc t = sccs
where (lowlink, node_stack, sccs) = visit t []1 []

visit :: HTree -> [Lab] -> [[Lab]] -> (Lab,[Labl,[[Labl])
visit (HLf i e) vs out
= (i, vs, [i]:out)

visit (HBin i s1 s2) vs out
= if lowlink == i
then (lowlink, dropWhile (>=i) vs’’,
takeWhile (>=i) vs’’:out?2)
else (lowlink, vs’’, out2)
where (k1, vs’, outl) = visit s1 (i:vs) out
(k2, vs’’,out2) = visit s2 vs’ outl

lowlink = minimum [k1, k2, i]

visit (HCross i t) vs out
= if (notElem j vs)
then (i, vs, [i]:out)
else (min i j, i:vs, out)
where j = lab t —-- (%) dereference in 0(1)
32

SCC: Tarjan’s Algorithm — procedural implementation

Input: Graph G = (V, E), Start node vO

index = 0 // DFS node number counter
S = empty // An empty stack of nodes
tarjan(vO0) // Start a DFS at the start node

procedure tarjan(v)

v.index = index // Set the depth index for v
v.lowlink = index++

S.push(v) // Push v on the stack
forall (v, v’) in E do // Consider successors of v

if (v’.index is undefined) // Was successor v’ visited?

tarjan(v’) // Recurse
v.lowlink = min(v.lowlink, v’.lowlink)
elseif (v’ in S) // Is v’ on the stack?
v.lowlink = min(v.lowlink, v’.index)
if (v.lowlink == v.index) // Is v the root of an SCC?
print "SCC:"
repeat
v’ = S.pop
print v’
until (v’ == v)

33

