What is the Category for Haskell?

Makoto Hamana

IPL, 2007, September

We roughly believe •••

- ▷ not just Set
- ▷ maybe **CPO**, due to lazyness, and mixed variance $(D \cong D \Rightarrow D)$
- Folklore: initial algebra = finial coalgebra e.g. List datatype in Haskell is given by an initial algebra but contains all infinite lists
- But: there are subtle categorical differences in several variations of cpos
- ► Clarify these!

We clarify •••

- ▷ why coincidence?
 - which is a suitable category of cpos?
- ▷ why infinite data?
- ▷ how can we give a datatype functor?
 - a non-strict continuous function given by a strict function
- ▷ what is Haskell's algebraic datatype?

Categories of CPOs

Def.

A cpo is a poset such that every ω -chain has a lub.

NOTE: it may not have \perp .

Consider slightly different categories: Cpo, Cppo, Cppo $_{\perp}$

All have cpos as objects.

Category	Сро	Срро	Cppo
bottom?	no		
functions	cont.	cont.	strict
D imes E	+	+	+
[D ightarrow E]	+	+	\checkmark
D+E	+	no	
Initial object	Ø	no	$\{\bot\}$
Terminal object	{*}	$\{\bot\}$	$\{\bot\}$
$D\otimes E$		\checkmark	\checkmark
$[D ightarrow_{\perp} E]$		\checkmark	+
$D\oplus E$		\checkmark	+
closed structure	ССС	ССС	monoidal closed
(co)completeness	\checkmark	no	\checkmark
i.alg.=final coalg.			\checkmark

General Construction of Initial Algebras

Thm. (Basic Lemma [Smyth-Plotkin])

Let \mathcal{C} be a category with initial object 0, and $F : \mathcal{C} \to \mathcal{C}$ a functor. If F preserves the colimit of the ω -chain D

$$0 \xrightarrow{!} F(0) \xrightarrow{F!} F^2(0) \xrightarrow{F^2!} \cdots$$

then, the initial F-algebra exists and is given by the mediating arrow from the colimit of the ω -chain $F(0) \to F^2(0) \to \cdots$

$$\operatorname{colim} FD \cong F(\operatorname{colim} D) \to \operatorname{colim} D$$

 \blacktriangleright Why cocompleteness? At least, if \mathcal{C} is \cdots

cocomplete (existence of any colimit) $\Rightarrow 0 \rightarrow F(0) \rightarrow F^2(0) \rightarrow \cdots$ has a colimit

Cor.

Let C be a cocomplete category. If F is ω -cocontinuos functor, the initial F-algebra exists.

Note: If C is a cpo, this is Knaster-Tarski fixpoint theorem.

Thm. [Mac Lane V.2.2]

Let \mathcal{C} be a category with coproducts and coequalizers, and $D: \mathbb{I} \to \mathcal{C}$ a diagram in \mathcal{C} .

Then, $\operatorname{colim} D$ exists and is given by the coequalizer

$$\coprod_{(f:j \to k) \in \operatorname{arr}\mathbb{I}} D(j) \xrightarrow{[\phi_f]} \coprod_{i \in \mathbb{I}} D(i) \longrightarrow \operatorname{colim} D$$

where

$$\phi_f: D(j) \xrightarrow{D(f)} D(k) \xrightarrow{\iota} \prod_i D(i)$$
 $\iota_f: D(j) \xrightarrow{\iota} \prod_i D(i)$

Remark

Non-strict functions can be represented by strict functions in $Cppo_{\perp}$

$$[X o Y] \;\cong\; (X)_\perp o_\perp Y$$

Type constructors are $\times \otimes \oplus (-)_{\perp}$

In **Set**, the list functor is

 $FX = 1 + \mathbb{N} imes X$

In $Cppo_{\perp}$, assume 1, \mathbb{N} to be flat cpos.

FX	cons :	how strict	i. alg.
$1 \oplus \mathbb{N} imes X$	$\mathbb{N} imes L o_{\perp} L$	$cons(\bot,\bot) = \bot ext{ but } cons(a,\bot) = a:\bot$	fin.& inf.
$1 \oplus \mathbb{N} \otimes X$	$\mathbb{N}\otimes L o_{\perp} L$	cons(ot, l) = cons(a, ot) = ot	\mathbb{N}^*
$1 \oplus \mathbb{N} \otimes X_\perp$	$\mathbb{N}\otimes L_{\perp} o_{\perp} L$	$cons(ot, l) = ot \mathrm{but} cons(a, ot) = a : ot$	fin.& inf.
$1 \oplus \mathbb{N}_{\perp} \otimes X_{\perp}$	$\mathbb{N}_{\perp} \otimes L_{\perp} \rightarrow_{\perp} L$	$cons(\bot, \bot) = \bot: \bot \neq \bot$	fin.& inf.

Remark

- (1) (\bot, \bot) is the least element of $\mathbb{N} \times L$
- (2) cons is a bistrict function
- (3) cons is a left strict function
- (4) $\mathbb{N}_{\perp} \otimes X_{\perp} \cong (\mathbb{N} \times X)_{\perp}$, cons is continuous. "continuous algebra". Haskell's datatype

Others

- \triangleright Initial algebra construction via repeated application of F
- ▷ Note: in $Cppo_{\perp}$, infinite coproduct should contain lub of ω -chain while finite coproduct is just a crushed disjoint sum

Why Initial Algebra = Final Coalgebra?

Def. Injection-Projection pair (e, p)

s.t. $p \circ e = id$, $e \circ p \sqsubseteq id$.

If such a pair (e, p) exists, p is uniquely determined by e. Why coincidence:

Actually, $\mu_i = F^i!$ and injective, so has projection

Datatypes and Cocomplete Categories

- ▷ **Set** for polynomial types
- ▷ Cppo⊥ for initial/finial (co)algebra coincidence
 & mixed variant types ("fold" given by Johan Glimming
 [CALCO'07] for C that is algebraically compact, has products, coproducts, smc, generator)
- Cpo for polynomial with monad types T ("fold" given by Filinski & Stovring [ICFP'07])
- ▷ [C, C] for nested datatypes, where C is ω -cocomplete ("generalised fold" given by Johann & Ghani [TLCA'07])
- \triangleright Set^S for simple GADT (e.g. phantom type of Expr)

Conclusion: Cppo_⊥ for core Haskell

Further Complication: Incorporating Function Types

To treat mixed-variant functor, e.g.,

$$FX = (X
ightarrow_{\perp} X)_{\perp}$$

local continuity is easier to chk than cocontinuity of datatype functor.

This means that we need to use order-enriched category $Cppo_{\perp}$.

Thm. Every locally continuous functor

$$F: \mathsf{Cppo}_{\perp}^{op} \times \mathsf{Cppo}_{\perp} \to \mathsf{Cppo}_{\perp}^{op} \times \mathsf{Cppo}_{\perp}$$

has an initial algebra, which is also a final coalgebra.

References

- (1) Smyth, Plotkin, *The category-theoretic solution of recursive domain equations*, SIAM J. Comput. Vol.11, No.4, 1982.
 - ▷ Basic lemma (dual is for final coalgebra)
 - \triangleright Embedding-projection pair construction for mixed variance in enriched setting \Rightarrow limit=colimit
- (2) Lehmann, Smyth, Algebraic Specification of Data Types: A Syntetic Approach, Mathematical Systems Theory 14, 97-139, 1981.
 - More detailed account for initial algebras for datatypes, such as lists, trees, stack, queues
- (3) Abramsky, Jung, *Domain Theory*, Handbook of LiCS, Vol.3, 1994.
 - ▷ Survey and modern account
- (4) Fiore, PhD thesis, 1996.

(5) Simpson, Plotkin, Complete Axioms for Categorical Fixed-point Operators, LICS'00.