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We roughly believe · · ·

B not just Set

B maybe CPO, due to lazyness, and mixed variance

(D ∼= D ⇒D)

B Folklore: initial algebra = finial coalgebra

e.g. List datatype in Haskell is given by an initial algebra but

contains all infinite lists

B But: there are subtle categorical differences in several variations

of cpos

I Clarify these!
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We clarify · · ·

B why coincidence?

– which is a suitable category of cpos?

B why infinite data?

B how can we give a datatype functor?

– a non-strict continuous function given by a strict function

B what is Haskell’s algebraic datatype?
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Categories of CPOs

Def.

A cpo is a poset such that every ω-chain has a lub.

NOTE: it may not have ⊥.

Consider slightly different categories: Cpo, Cppo, Cppo⊥

All have cpos as objects.
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Category Cpo Cppo Cppo⊥

bottom? no ⊥ ⊥

functions cont. cont. strict

D×E + + +

[D → E] + +
√

D + E + no

Initial object ∅ no {⊥}

Terminal object {∗} {⊥} {⊥}

D ⊗ E
√ √

[D →⊥ E]
√

+

D ⊕ E
√

+

closed structure ccc ccc monoidal closed

(co)completeness
√

no
√

i.alg.=final coalg.
√
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General Construction of Initial Algebras

Thm. (Basic Lemma [Smyth-Plotkin])

Let C be a category with initial object 0, and F : C → C a functor.

If F preserves the colimit of the ω-chain D

0
! - F (0)

F !- F
2
(0)

F 2!- · · ·

then, the initial F -algebra exists and is given by the mediating arrow

from the colimit of the ω-chain F (0) → F 2(0) → · · ·

colim F D ∼= F (colim D) → colim D

I Why cocompleteness? At least, if C is · · ·

cocomplete (existence of any colimit)

⇒ 0 → F (0) → F 2(0) → · · · has a colimit
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Why Cocompleteness?

Cor.

Let C be a cocomplete category. If F is ω-cocontinuos functor,

the initial F -algebra exists.

Note: If C is a cpo, this is Knaster-Tarski fixpoint theorem.
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Construction of Colimits

Thm. [Mac Lane V.2.2]

Let C be a category with coproducts and coequalizers,

and D : I → C a diagram in C.

Then, colim D exists and is given by the coequalizer

∐
(f :j→k)∈arrI

D(j)
[φf ]

-

[ιf ]
-

∐
i∈I

D(i) - colim D

where

φf : D(j)
D(f)- D(k)

ι -
∐
i

D(i)

ιf : D(j)
ι -

∐
i

D(i)
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Example: List Types in Cppo⊥

Remark

Non-strict functions can be represented by strict functions in Cppo⊥

[X → Y ] ∼= (X)⊥ →⊥ Y

Type constructors are × ⊗ ⊕ (−)⊥

In Set, the list functor is

F X = 1 + N×X
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In Cppo⊥, assume 1, N to be flat cpos.

F X cons : how strict i. alg.

1 ⊕ N×X N×L →⊥ L cons(⊥, ⊥) = ⊥ but cons(a, ⊥) = a:⊥ fin.& inf.

1 ⊕ N ⊗ X N ⊗ L →⊥ L cons(⊥, l) = cons(a, ⊥) = ⊥ N∗

1 ⊕ N ⊗ X⊥ N ⊗ L⊥ →⊥ L cons(⊥, l) = ⊥ but cons(a, ⊥) = a:⊥ fin.& inf.

1 ⊕ N⊥⊗X⊥ N⊥⊗L⊥ →⊥ L cons(⊥, ⊥) = ⊥:⊥ 6= ⊥ fin.& inf.

Remark

(1) (⊥, ⊥) is the least element of N×L

(2) cons is a bistrict function

(3) cons is a left strict function

(4) N⊥ ⊗ X⊥ ∼= (N×X)⊥, cons is continuous.

“continuous algebra”. Haskell’s datatype
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Others

B Initial algebra construction via repeated application of F

B Note: in Cppo⊥, infinite coproduct should contain lub of

ω-chain while finite coproduct is just a crushed disjoint sum

11



Why Initial Algebra = Final Coalgebra?

Def. Injection-Projection pair (e, p)

C
e -¾
p

D

s.t. p ◦ e = id, e ◦ p v id.

If such a pair (e, p) exists, p is uniquely determined by e.

Why coincidence:

0
! -¾ F (0)

F ! -¾ F
2
(0)

F 2! -¾ · · ·HHHHHHHHHHHHHHH
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lim D ∼= colim D

µ2

? ¾∃!m

∼=- F (colim D) ∼= F (lim D)

Actually, µi = F i! and injective, so has projection
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Datatypes and Cocomplete Categories

B Set for polynomial types

B Cppo⊥ for initial/finial (co)algebra coincidence

& mixed variant types (“fold” given by Johan Glimming

[CALCO’07] for C that is algebraically compact, has products,

coproducts, smc, generator)

B Cpo for polynomial with monad types T

(“fold” given by Filinski & Stovring [ICFP’07])

B [C, C] for nested datatypes, where C is ω-cocomplete

(“generalised fold” given by Johann & Ghani [TLCA’07])

B SetS for simple GADT (e.g. phantom type of Expr)

Conclusion: Cppo⊥ for core Haskell

13



Further Complication: Incorporating Function Types

To treat mixed-variant functor, e.g.,

F X = (X →⊥ X)⊥

local continuity is easier to chk than cocontinuity of datatype

functor.

This means that we need to use order-enriched category Cppo⊥.

Thm. Every locally continuous functor

F : Cppoop
⊥ ×Cppo⊥ → Cppoop

⊥ ×Cppo⊥

has an initial algebra, which is also a final coalgebra.
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