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Abstract. In this paper, we show that for every constant 0 < ε <
1/2 and for every constant d ≥ 2, the minimum size of a depth d
Boolean circuit that ε-approximates Majority function on n variables
is exp(Θ(n1/(2d−2))). The lower bound for every d ≥ 2 and the upper
bound for d = 2 have been previously shown by O’Donnell and Wimmer
[ICALP’07], and the contribution of this paper is to give a matching
upper bound for d ≥ 3.

1 Introduction and Results

An investigation of the construction of small circuits for computing Majority
function in various computational models has attracted many researchers for a
long time. Interesting positive results (e.g., for comparator networks [3] or for
monotone formulae [8]) as well as some negative results (e.g., for constant depth
circuits [5]) have been obtained so far.

There also have been many researches on the construction of circuits to
approximate the majority function. In this paper, we consider this problem in
the model of constant depth circuits consisting of AND and OR gates with
unbounded fan-in.

It seems that there are two major notions of “approximate-Majority” in this
model. The first meaning of “approximate-Majority” is to compute a function
that coincides with the majority function on every point including at least 2/3
fraction of 1’s, or at most 1/3 fraction of 1’s. The complexity of approximate-
Majority of this notion is closely related to the complexity of probabilistic com-
putations, and has been widely investigated (see e.g., [1, 2, 9].)

The second meaning of “approximate-Majority”, which we focus on in this
paper, is to compute a function that disagrees with the majority function on at
most ε fraction of all points. We call such a function an ε-approximation of the
majority function.

O’Donnell and Wimmer [7] first investigated this problem and obtained the
following: (i) For every constant 0 < ε < 1/2 and every constant d ≥ 2, any
depth-d circuit computing an ε-approximation of the majority function on n
variables has size exp(Ω(n1/(2d−2))), and (ii) When d = 2, this lower bound is
optimal up to a constant factor in the exponent. The lower bound is proved by
a combination of the argument based on the H̊astad’s switching lemma [5] (see



also [4]) and the Kruskal-Katona Theorem developed in extremal set theory.
The upper bound is proved by showing the existence of a DNF formula of size
exp(O(

√
n)) that ε-approximates the majority function for every constant 0 <

ε < 1/2. Since the majority function has the largest total influence among all
monotone Boolean functions, a good solution to this problem would help to a
better understanding of the relationship between the total influence of monotone
functions and the size of small depth circuits for approximating them, which has
been widely investigated (see [7] and the references therein).

In this paper, we extend their results and show that their lower bound is
in fact optimal (again, up to a constant factor in the exponent) for every con-
stant d. Precisely, we give a probabilistic construction of depth d circuits of size
exp(O(n1/(2d−2))) that ε-approximates the majority function on n variables, for
every constant 0 < ε < 1/2 and for every constant d ≥ 3. This is a main (and
essentially only) result of this paper. Note that the minimum size of a depth
d circuit that exactly computes the majority function is known to be between
exp(Ω(n1/(d−1))) and exp(O(n1/(d−1)(log n)1−1/(d−1))) (see [5] or [10, Theorem
4.4, p.333] for the lower bound, and [6] for the upper bound).

The proof of our result is a simple generalization of the technique used in
a beautiful construction of O(n5.3) size monotone formulas for the majority
function by Valiant [8]. It should be noted that our circuit is monotone (i.e.,
without negated literals) and is formula (i.e., every gate has fan-out one). In
addition, our approach can also be used for constructing a small circuit for the
alternate version of approximate-majority, which will be discussed in the last
part of this paper.

The organization of the paper is as follows. In Section 2, we give some nota-
tions and definitions. In Section 3, we describe the framework of our construction.
The proof of the main result is described in Section 4. Finally, in Section 5, we
show that our approach can also yield a small circuit for approximating majority
of the first kind, together with some open problems.

2 Notations and Definitions

For a binary string x ∈ {0, 1}n, |x| denotes the number of 1’s in x. The majority
function on n variables, which is denoted by Majn, is a Boolean function defined
by Majn(x) = 1 iff |x| ≥ n/2. For 0 < ε < 1, a Boolean function f : {0, 1}n →
{0, 1} is said an ε-approximation for Majn if f and Majn disagree on at most ε
fraction of all inputs, i.e.,

Pr
x

[f(x) 6= Majn(x)] ≤ ε,

where the probability is over the uniform distribution on {0, 1}n. For a set S,
]S denotes the cardinality of S.

We consider single-output circuits that consists of unbounded fan-in AND
and OR gates over the input literals, i.e., input variables and their negations.
The depth of a circuit is the number of gates in a longest path from the output
to an input. The size of a circuit is the number of AND and OR gates in it.



Throughout the paper, e denotes the base of the natural logarithm.

3 Random Circuits

Let W = (w1, . . . , wd) be a d-tuple of integers such that wi ≥ 2 for every
1 ≤ i ≤ d. The values of wi will be determined later. Define a sequence of
random circuits f0, f1, . . . , fd on X = {x1, . . . , xn} recursively as follows:

1. f0 is a Boolean variable chosen uniformly from X = {x1, . . . , xn}.
2. For odd k, fk is an AND of wk independent copies of fk−1. For even k, fk is

an OR of wk independent copies of fk−1.

It is clear that fd is a random circuit (in fact, formula) of depth d, where the
bottom level consists of AND gates, and the fan-in of each gate at the k-th level
is wk. The number of gates in fd is given by 1+wd +wd−1wd + · · ·+∏d

k=2 wk <

2
∏d

k=2 wk.
For k = 0, . . . , d and i ∈ {0, 1}, let Ai

k(p) : [0, 1] → [0, 1] be a function defined
as follows:

A1
0(p) = p, for every p ∈ [0, 1]

A1
k(p) = (A1

k−1(p))wk for every odd k, and for every p ∈ [0, 1]
A0

k(p) = (A0
k−1(p))wk for every even k with k ≥ 2, and for every p ∈ [0, 1]

A0
k(p) + A1

k(p) = 1 for every k, and for every p ∈ [0, 1].

When f0 gets one with probability p then fk outputs i ∈ {0, 1} with probability
Ai

k(p). Note that A1
k(·) (A0

k(·), resp.) is monotonically increasing (decreasing,
resp.).

The following simple lemma relates the value of Ai
k(·)’s with the size of ε-

approximator circuits for the majority function.

Lemma 1. Suppose that, for a given W = (w1, . . . , wd), we have

A1
d

(
1/2− ε/

√
n
) ≤ ε, (1)

and

A0
d

(
1/2 + ε/

√
n
) ≤ ε. (2)

Then there is a depth d circuit of size less than 2
∏d

k=2 wk that computes a
3ε-approximation for Majn.

Proof For every x ∈ {0, 1}n with |x| ≤ n/2− ε
√

n, we have

Pr
fd

[fd(x) 6= Majn(x)] ≤ A1
d

(
1/2− ε/

√
n
) ≤ ε,

since Eq. (1) and A1
d(·) is monotonically increasing. Similarly, for every x ∈

{0, 1}n with |x| ≥ n/2 + ε
√

n, we have

Pr
fd

[fd(x) 6= Majn(x)] ≤ A0
d

(
1/2− ε/

√
n
) ≤ ε,



since Eq. (2) and A0
d(·) is monotonically decreasing. These immediately implies

that there is a depth d circuit of size less than 2
∏d

k=2 wk whose output disagrees
with the majority function on at most

ε
2n

2
+ ε

2n

2
+ ]{x ∈ {0, 1}n | n/2− ε

√
n < |x| < n/2 + ε

√
n}

inputs. The last term is upper bounded by

2ε
√

n

(
n

n/2

)
≤ 2ε

√
n · 2n

√
n

= 2ε · 2n,

where the first inequality follows from the Stirling formula. This completes the
proof of the lemma. ¤

Note that, in this notation, a famous construction of O(n5.3) size mono-
tone formulae by Valiant [8] can be written as: A0

d(α(1/2 + 1/n)) < 2−n and
A1

d(α(1/2 − 1/n)) < 2−n for W = (2, 2, . . . , 2) with d ∼ 5.3 log2 n and α =
(
√

5− 1)/2.

4 Bounds for Approximating Majority

In this section, we show our main theorem:

Theorem 2. For every constant 0 < ε < 1/2 and for every constant d ≥ 3, the
majority function on n variables can be ε-approximated by a depth d circuit of
size 2O(n1/(2d−2)). This is optimal up to a constant factor in the exponent.

By Lemma 1, all we have to do is choose a suitable parameter W = (w1, . . . , wd)
and verify that A0

d(1/2 + ε/
√

n) ≤ ε and A1
d(1/2− ε/

√
n) ≤ ε.

We first give a proof for the case d = 3 as an illustrative example in Section
4.1, and then give a proof for general cases in Section 4.2. The proof for general
cases includes also the case d = 3, and so a reader can skip Section 4.1 and go
directly to Section 4.2. The key ingredient of the proof is Lemmas 3 and 4 in
Section 4.2.

4.1 Construction of Depth Three Circuits

We pick W = (w1, w2, w3) with w1 = 1
ε n1/4, w̃2 = 2w1w1, w2 = (ln 2)w̃2,

w̃3 = 2w1 and w3 = (ln 2)w̃3. The number of gates in a circuit that will be
constructed is less than 2w2w3 = 2(ln 2)2(2w1)2w1 = 2O(n1/4/ε).

Note that A1
1(1/2) = (1/2)w1 , A0

2(1/2) = (1 − (1/2)w1)w2 ∼ (1/2)w1 and
A1

3(1/2) = (1− (1/2)w1)w3 ∼ 1/2, which is a key property of our parameter. Put
ph := 1/2 + ε/

√
n and p` := 1/2− ε/

√
n. Below we give a proof for A0

3(ph) ≤ ε
and A1

3(p`) ≤ ε, which is a bit long but uses only elementary calculations.
We first show that A0

3(ph) ≤ ε. By the definition, we have

A0
2(ph) = (1− pw1

h )w2 =
{

(1− pw1
h )(ln 2/p

w1
h )

}p
w1
h w̃2 ≤

(
1
2

)p
w1
h w̃2

. (3)



Here we use the inequality (1− q)1/q ≤ 1/e for q < 1. The exponent in the last
term of Eq. (3) is

pw1
h w̃2 =

(
1
2

+
ε√
n

)w1

w̃2 = w̃2

{(
1
2

)w1
(

1 +
2ε√
n

)w1
}

≥ w̃2

(
1
2

)w1
(

1 +
2ε√
n

w1

)
= w1

(
1 +

2
n1/4

)
. (4)

Here we use the inequality (1 + q)r ≥ 1 + qr for q > 0 and r ≥ 1.
We proceed to the estimation of A0

3(ph). Since (1 − q)r ≥ 1 − qr for q < 1
and r ≥ 1, we have

A0
3(ph) = 1− (1−A0

2(ph))w3 ≤ 1− (1−A0
2(ph)w3) = A0

2(ph)w3. (5)

By plugging Eqs. (3) and (4) into Eq. (5), we have

A0
3(ph) ≤ A0

2(ph)w3 ≤ (ln 2)
(

1
2

)w1
(

1
2

)w1
2

n1/4

2w1

= (ln 2)
(

1
2

) 2
ε

< (ln 2)
ε

2
< ε,

where the second last inequality follows from (1/2)2/ε < ε/2 which is equivalent
to (1/2) < (ε/2)ε/2. This holds since the minimum value of the function qq is
(1/e)1/e ∼ 0.6922 > (1/2).

We now turn to show A1
3(p`) ≤ ε, in which we should bound the value of A0

2

from below.

A0
2(p`) = (1− pw1

` )w2 =
{

(1− pw1
` )(ln 2/p

w1
` )

}p
w1
` w̃2

≥
{

(1− pw1
` )

1
e

}(ln 2)·pw1
` w̃2

>

{
(1− pw1

` )
1
2

}p
w1
` w̃2

. (6)

We use (1− 1/q)q ≥ (1− 1/q)(1/e) for q > 1 to derive the first inequality1, and
use (1− q)ln 2 > 1− q to the second. The exponent in the last term is

pw1
` w̃2 =

(
1
2
− ε√

n

)w1

w̃2 = w̃2

(
1
2

)w1
(

1− 2ε√
n

)w1

≤ w1

(
1
2

) 2ε√
n

1
ln 2 w1

= w1

(
1
2

) 2
ln 2

1
n1/4

≤ w1

(
1− 1

ln 2
1

n1/4

)
. (7)

We use (1−1/q)q ≤ 1/e for q > 1 to derive the first inequality, and use (1/2)2q ≤
(1 − q) for q ≤ 1/2, which is equivalent to (1/4) ≤ (1 − q)1/q, to derive the
1 Proof: (1 − 1/q)q = (1 − 1/q)(1 − 1/q)q−1 = (1 − 1/q)(1 + 1/(q − 1))−(q−1) ≥

(1− 1/q)(1/e).



last inequality. By plugging Eq. (7) into Eq. (6), we can show that, for every
sufficiently large n,

A0
2(p`) ≥

(
1
2

)w1(1−1/n1/4)

. (8)

The proof of the above inequality is described in Appendix (Section 6.1).
We now proceed to the estimation of A1

3(p`). Since (1 − q)r ≤ (1/e)qr for
q < 1 and r > 0, we have

A1
3(p`) = (1−A0

2(p`))w3 ≤
(

1
2

)w̃3A0
2(p`)

.

In order to show A1
3(p`) ≤ ε, it is sufficient to show that w̃3A

0
2(p`) ≥ log2(1/ε).

By Eq. (8), we have

w̃3A
0
2(p`) ≥ 2w1

(
1
2

)w1(1−1/n1/4)

=
(

1
2

)−w1/n1/4

= 21/ε > log2(1/ε).

This completes the proof of Theorem 2 for d = 3.

4.2 Construction for General Depths

We pick W = (w1, w2, . . . , wd) such that

– w1 = (1/ε)n1/(2d−2),
– w̃k = 2w1w1 and wk = (ln 2)w̃k for k = 2, . . . , d− 1,
– w̃d = 2w1 and wd = (ln 2)w̃d.

As for the case d = 3, we choose parameters so that A1
1(1/2) = (1/2)w1 ,

A0
2(1/2) = (1 − (1/2)w1)w2 ∼ (1/2)w1 , A1

3(1/2) = (1 − (1/2)w1)w3 ∼ (1/2)w1 ,
and so on. It should be noted that the asymptotically optimal construction
of depth two circuit of size exp(Θ(

√
n)) by O’Donnell and Wimmer [7] is a

random DNF of width w1 = (1/ε)
√

n and size w2 = (ln 2)2w1 . Hence, for d = 2,
our construction completely matches their construction, and so this can also be
viewed as a natural extension of their construction.

The following two lemmas are almost all that we need. The proof of these
two lemmas is described in Appendix (Sections 6.2 and 6.3).

Lemma 3. Let w = (ln 2)2w1w1. Suppose that n is sufficiently large. Suppose
also that

A ≥
(

1
2

)w1 (
1 + cn

α−d
2(d−1)

)

for some α ∈ {2, . . . , d− 1} and some positive constant c. If α < d− 1, then

(1−A)w ≤
(

1
2

)w1 (
1− c

2ε
n

(α+1)−d
2(d−1)

)
.



If α = d− 1, then

(1−A)w ≤
(

1
2

)w1
(

1
2

) c
ε

.

Lemma 4. Let w = (ln 2)2w1w1. Suppose that n is sufficiently large. Suppose
also that

A ≤
(

1
2

)w1 (
1− cn

α−d
2(d−1)

)
,

for some α ∈ {2, . . . , d− 1} and some positive constant c. If α < d− 1, then

(1−A)w ≥
(

1
2

)w1 (
1 +

c

2ε
n

(α+1)−d
2(d−1)

)
.

If α = d− 1, then

(1−A)w ≥
(

1
2

)w1
(

1
2

)− c
1.1ε

.

Proof of Theorem 2 Let W = (w1, . . . , wd) be as described at the beginning
of this subsection. The size of a circuit that will be constructed is less than
2

∏d
k=2 wk = 2(ln 2)d−1(2w1)d−1(w1)d−2 = 2O(n1/(2d−2)/ε). Put ph := 1/2 + ε/

√
n

and p` := 1/2− ε/
√

n. Below, we will show that A0
d(ph) ≤ ε and A1

d(p`) ≤ ε.
We first show that A0

d(ph) ≤ ε. We start with

A1
1(ph) =

(
1
2

)w1
(

1 +
2ε√
n

)w1

≥
(

1
2

)w1 (
1 + 2n

2−d
2(d−1)

)
>

(
1
2

)w1 (
1 + n

2−d
2(d−1)

)
, (9)

where the first inequality follows from the inequality (1 + q)r ≥ 1 + qr for q ≥ 0
and r ≥ 1. We use Lemma 3 to get

A0
2(ph) = (1−A1

1(ph))w2 ≤
(

1
2

)w1
(

1− 1
2ε

n
3−d

2(d−1)

)
.

Then we use Lemma 4 to get

A1
3(ph) = (1−A0

2(ph))w3 ≥
(

1
2

)w1
(

1 +
1

(2ε)2
n

4−d
2(d−1)

)
.

By applying Lemmas 3 and 4 alternatively, we have

A0
d−2(ph) ≤

(
1
2

)w1
(

1− 1
(2ε)d−3

n
−1

2(d−1)

)
(10)



when d is even, or we have

A1
d−2(ph) ≥

(
1
2

)w1
(

1 +
1

(2ε)d−3
n

−1
2(d−1)

)
(11)

when d is odd. Note that when d = 3 we have already obtained Eq.(11) as Eq.(9).
By applying Lemma 3 or 4 once again, we obtain

A1
d−1(ph) ≥

(
1
2

)w1
(

1
2

)− 1
(1.1ε)(2ε)d−3

≥
(

1
2

)w1
(

1
2

)− 1
2ε

=
(

1
2

)w1

2
1
2ε ≥

(
1
2

)w1

· log2(1/ε) (12)

when d is even, and

A0
d−1(ph) ≤

(
1
2

)w1
(

1
2

) 1
(ε)(2ε)d−3

≤
(

1
2

)w1
(

1
2

) 1
ε

(13)

when d is odd. The case for even d is finished by using Eq. (12):

A0
d(ph) = (1−A1

d(ph))wd

≤
{

1−
(

1
2

)w1

log2(1/ε)
}(ln 2)2w1

≤
(

1
2

)log2(1/ε)

= ε,

where the first inequality follows from the inequality (1−q)r ≤ (1/e)qr for q ≤ 1
and r ≥ 0. The case for odd d is finished by using Eq. (13):

A1
d(ph) ≥

{
1−

(
1
2

)w1
(

1
2

) 1
ε

}(ln 2)2w1

≥ 1− (ln 2)
(

1
2

) 1
ε

> 1− (ln 2)ε > 1− ε.

Here we use the inequality (1 − q)r ≥ 1 − qr for q ≤ 1 and r ≥ 1 to derive the
first inequality, and use (1/2)(1/q) < q, which is equivalent to (1/2) < qq, to the
second. This holds since the minimum value of the function qq is (1/e)(1/e) ∼
0.6922.

We now turn to show A1
d(p`) ≤ ε. The proof is almost analogous to the proof

for A0
d(ph) ≤ ε. The “base” is

A1
1(p`) =

(
1
2

)w1
(

1− 2ε√
n

)w1

≤
(

1
2

)w1
(

1
2

) 2
ln 2 n

2−d
2(d−1)

≤
(

1
2

)w1
(

1− 1
ln 2

n
2−d

2(d−1)

)
<

(
1
2

)w1 (
1− n

2−d
2(d−1)

)
, (14)

where the first inequality follows from the inequality (1−q)r ≤ (1/e)qr for q ≤ 1
and r ≥ 0, and the second inequality follows from the inequality (1/2)2q ≤ 1− q



for q ≤ 1/2, which is equivalent to (1/4) ≤ (1 − q)1/q. By applying Lemmas 3
and 4 alternatively, we have

A1
d−2(p`) ≤

(
1
2

)w1
(

1− 1
(2ε)d−3

n
−1

2(d−1)

)
,

when d is odd (note again that when d = 3, we have already obtained this as
Eq.(14)), or we have

A0
d−2(p`) ≥

(
1
2

)w1
(

1 +
1

(2ε)d−3
n

−1
2(d−1)

)

when d is even. These inequalities are identical to Eqs. (10) and (11) if we swap
ph and p`, “odd” and “even”, and the role of 0 and 1. This immediately implies
the desired bound, i.e., A1

d(p`) ≤ ε, since we have shown A0
d(ph) ≤ ε from Eqs.

(10) and (11). ¤

5 Bottom Fan-in and Depth-3 Circuit Size

Our approach can also handle the problem for constructing small circuits to
compute an “Approximate-Majority” of the first kind described in Introduction,
i.e., to compute a function f : {0, 1}n → {0, 1} such that f(x) = 1 for every
x with |x| ≥ (2/3)n and f(x) = 0 for every x with |x| ≤ (1/3)n. If we restrict
ourselves to depth d = 3, the conditions that should be satisfied are now

A1
3(1/3) <





(1/3)n∑

i=0

(
n

i

)



−1

∼ 2−H(1/3)n, (15)

and

A0
3(2/3) <





n∑

i=(2/3)n

(
n

i

)



−1

∼ 2−H(1/3)n, (16)

where H(p) := −p log2 p − (1 − p) log2(1 − p) denotes the binary entropy func-
tion. An easy calculation shows that these are satisfied by the parameter W =
(w1, w2, w3) := (log2 n, (ln 2)(log2 n)nlog2 3, n2), which implies that there is a
depth-3 circuit with bottom fan-in log2 n that approximates the majority (in
the meaning of the first kind of approximation) whose size is O(n2+log2 3+ε),
i.e., polynomial in n. The calculation for verifying this is described in Appendix
(Section 6.4).

It has been recently shown by Viola [9] that every depth-3 circuit with bottom
fan-in at most (log2 n)/2 that approximates the majority on n variables has size
at least 2n0.1

. This means that a sharp threshold phenomenon (i.e., the size of
circuits becomes polynomial from exponential as the bottom fan-in increases)
occurs at somewhere between (log2 n)/2 and log2 n. A careful inspection of the



proof by Viola [9] can improve the lower limit to {1/(log2 3)−ε}n ∼ 0.631 log2 n,
but still has a gap. If we decrease the value of w1 from log2 n to α log2 n with
α < 1, then it will not be possible to satisfy Eqs. (15) and (16) by parameters
w2 and w3 whose values are polynomial in n. Hence, the problem to determine
the true threshold value, or to see what happen around the threshold would be
interesting.
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6 Appendix

6.1 Proof of Eq. (8)

What we want to show is
{

(1− pw1
` )

1
2

}w1(1− 1
ln 2

1
n1/4 )

≥
(

1
2

)w1(1− 1
n1/4 )

.

This is equivalent to

1− pw1
` ≥

(
1
2

) 1−ln 2
(ln 2)n1/4−1

. (17)



Since 1− q ≥ (1/2)2q for q ≤ 1/2, we have

1−Θ

(
1

n1/4

)
= 1− 1

2
· 1− ln 2
(ln 2)n1/4 − 1

≥ RHS of Eq. (17).

Since pw1
` is exponentially small in n, i.e., pw1

` = O(1/2n1/4
) = o(1/n1/4), Eq.

(17) holds for sufficiently large n. ¤

6.2 Proof of Lemma 3

Since (1− q)r ≤ (1/e)qr for q ≤ 1 and r ≥ 0, we have

(1−A)w = (1−A)(ln 2)2w1w1 ≤
(

1
2

)A·2w1w1

≤
(

1
2

)w1(1+cn
α−d

2(d−1) )

=
(

1
2

)w1
(

1
2

)c·w1n
α−d

2(d−1)

=
(

1
2

)w1
(

1
2

) c
ε n

(α+1)−d
2(d−1)

.

This completes the proof for α = d−1. If α < d−1, then the exponent of the last
term converges to 0 as n →∞. Hence, we use the inequality (1/2)q ≤ (1− q/2)
for q ≤ 1, which is equivalent to (1/4) ≤ (1− q/2)2/q, to show

(1−A)w ≤
(

1
2

)w1 (
1− c

2ε
n

(α+1)−d
2(d−1)

)
(for sufficiently large n),

which completes the proof of the lemma. ¤

6.3 Proof of Lemma 4

By using the inequality (1− 1/q)q ≥ (1− 1/q)(1/e) for q > 1 (whose proof is in
the footnote in Section 4.1), we have

(1−A)w = (1−A)(ln 2)2w1w1 ≥
{

(1−A)
(

1
2

)}A·2w1w1

≥
{

(1−A)
(

1
2

)}w1(1−cn
α−d

2(d−1) )

≥
(

1
2

)w1(1− c
1.1 n

α−d
2(d−1) )

(for sufficiently large n)

=
(

1
2

)w1
(

1
2

)− c
1.1ε n

(α+1)−d
2(d−1)

,

where the third inequality can be derived by a similar calculation as the proof
of Eq. (8) in Section 6.1. This completes the proof for the case α = d− 1. When



α < d − 1, the exponent of the last term converges to 0 as n → ∞. Hence,
we can use the inequality 2q ≥ (1 + (ln 2)q) for q < 1, which is equivalent to
e ≥ (1 + q)1/q, to show

(1−A)w ≥
(

1
2

)w1
{

1 +
(ln 2)c
1.1ε

n
(α+1)−d
2(d−1)

}
(for sufficiently large n)

>

(
1
2

)w1 {
1 +

c

2ε
n

(α+1)−d
2(d−1)

}
.

This completes the proof of the lemma. ¤

6.4 Depth-3 Circuits for Approximating Majority of the First Kind

This section describes the calculation for verifying Eqs. (15) and (16) when we
set W := (log2 n, (ln 2)(log2 n)nlog2 3, n2) (See Section 5). Eq. (15) is verified by
the following series of calculations.

A1
1(1/3) =

(
1
3

)log2 n

=
1

nlog2 3
,

A0
2(1/3) =

(
1− 1

nlog2 3

)(ln 2)(log2 n)nlog2 3

∼
(

1
e

)(ln 2)(log2 n)

=
1
n

,

A1
3(1/3) =

(
1− 1

n

)n2

∼
(

1
e

)n

< 2−n < 2−H(1/3)n.

Eq. (16) is verified by the following series of calculations.

A1
1(2/3) =

(
2
3

)log2 n

=
1

nlog2 3−1
,

A0
2(2/3) =

(
1− 1

nlog2 3−1

)(ln 2)(log2 n)nlog2 3

∼
(

1
e

)(ln 2)(log2 n)n

=
1
nn

,

A0
3(2/3) = 1−

(
1− 1

nn

)n2

< 1−
(

1− n2

nn

)
=

n2

nn
< 2−n < 2−H(1/3)n.

Strictly speaking, this is not a formal proof since we use an asymptotic estimation
(i.e., (1− 1/n)n ∼ 1/e) here. However, it will be obtained by some more careful
estimations.


