
HOR 2012

6th International Workshop on
Higher-Order Rewriting

Makoto Hamana (ed.)

RTA’12 Affiliated Workshop
Nagoya, Japan
June 2, 2012

Preface

This is the proceedings volume of the 6th International Workshop on Higher- Order Rewriting
(HOR 2012), which was held on June 2, 2012, in Nagoya, Japan.

The aim of HOR is to provide an informal forum to discuss all aspects of higher-order
rewriting. The topics of the workshop include applications, foundations, frameworks, imple-
mentations, and semantics.

HOR is a biannual meeting. HOR 2002 was a part of FLoC 2002 in Copenhagen, Denmark.
HOR 2004 was part of the RDP 2004 in Aachen, Germany. HOR 2006 was part of FLoC 2006
in Seattle, USA. HOR 2007 was part of RDP 2007 in Paris, France. HOR 2010 was part of
FloC 2010 in Edinburgh, UK. HOR 2012 is an RTA 2012 workshop in Nagoya, Japan.

The present volume provides final versions of six accepted contributed extended abstracts of
talks selected for the workshop. HOR 2012 had also a tool session. The following termination
checkers for higher-order rewriting systems was presented:

• Carsten Fuhs: Haskell termination tool

• Rene Thiemann: Isabelle termination tool

• Takahito Aoto and Toshiyuki Yamada: Simply-typed TRS termination tool

• Cynthia Kop: WANDA, termination tool for Algebraic Functional Systems

We are grateful to these authors for accepting to present thier tools at HOR. We are also very
grateful to Zhenjiang Hu (National Institute of Informatics, Japan) for kindly accepting to give
an invited talk at HOR 2012.

Many thanks to the program committee that I had the pleasure to chair, consisting of
Andreas Abel, Frederic Blanqui, Stefan Kahrs and Fer-Jan de Vries. The tasks were the de-
cisions on the invited speakers, a timely refereeing of the submitted abstracts and the final
decisions on the program. A heartfelt thank you to the HOR workshop series steering commit-
tee, Delia Kesner and Femke van Raamsdonk, who offered me to take this responsibility for the
higher-order rewriting community and gave valuable advice throughout. Finally, we would like
to thank the organizing committee of RTA 2012, and in particular Naoki Nishida, for all help in
the preparation of the workshop.

June 2012
Makoto Hamana (Gunma University, Japan)

Contents

Part I: Invited Talk

Can Graph Transformation be Bidirectionalized?
— Bidirectional Semantics of Structural Recursion on Graphs — 1
Zhenjiang Hu

Part II: Category A Talks
(Extended abstracts of new results, or describing work in progress)

Transformations by Templates for Simply-Typed Term Rewriting 3
Yuki Chiba and Takahito Aoto

Confluence via Critical Valleys 9
Vincent van Oostrom

Termination of Higher-order Rewriting in Dependent Type Calculi 11
Jean-Pierre Jouannaud and Jian-Qi Li

Higher Order Rewriting for Real Programmers 17
Kristoffer Rose

Part III: Category B Talks
(Short versions of recently published articles on higher-order rewriting)

The Permutative λ-calculus 23
Beniamino Accattoli and Delia Kesner

A Unified Approach to Fully Lazy Sharing 26
Thibaut Balabonski

Can Graph Transformation be Bidirectionalized?
Bidirectional Semantics of Structural Recursion on Graphs

Zhenjiang Hu
National Institute of Informatics, Japan

hu@nii.ac.jp

Bidirectional transformations provide a novel mechanism for synchronizing and maintaining the con-
sistency of information between input and output. Despite many promising results on bidirectional
transformations, these have been limited to lists and trees. We challenge the problem of bidirectional
transformations on graphs, by proposing a formal definition of a well-behaved bidirectional seman-
tics for UnCAL, a graph algebra. Our key idea is to treat graphs as compactable infinite trees and to
manipulate trees by structural recursion. Specifically, we carefully refine the existing forward eval-
uation of structural recursion so that it can produce sufficient trace information for later backward
evaluation, and we use the trace information for backward evaluation to reflect updates on the view
to the source. We prove our bidirectional evaluation is well-behaved.

- 1 -

- 2 -

Submitted to:
HOR 2012

c© Y. Chiba & T. Aoto
This work is licensed under the
Creative Commons Attribution License.

Transformation by Templates
for Simply-Typed Term Rewriting

Yuki Chiba
School of Information Science, Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
chiba@jaist.ac.jp

Takahito Aoto
RIEC, Tohoku University

2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
aoto@nue.riec.tohoku.ac.jp

We extend a framework of program transformation by templates based on first order term rewriting
(Chiba et al., 2005) to simply typed term rewriting (Yamada, 2001), which is a framework of higher
order term rewriting. A pattern matching algorithm to apply templates for transforming a simply
typed term rewriting system is given and the correctness of the algorithm is shown.

1 Program transformation by templates and simply typed term pattern

Huet and Lang [4] introduced a framework of program transformation by templates. In this framework,
the second-order matching algorithm plays an important role—how to apply the transformation template
to a given program is specified by the solution of the matching algorithm. Curien et al. [3] gave an
efficient matching algorithm. Yokoyama et al. [7] presented a sufficient condition of patterns to have
at most one solution. De Moor and Sittampalam [5] gave a matching algorithm containing third-order
matching. In all of these frameworks, programs and program schemas are represented by lambda terms
and higher-order substitutions are performed by β -reduction.

In Chiba et al. [1, 2], we introduced a framework of program transformation by templates based on
term rewriting. Contrast to the framework mentioned above, programs and program schemas are given
by term rewriting systems (TRSs for short) and TRS patterns, where TRS patterns is a TRS in which
pattern variables are used in the place of function symbols. For example, a program transformation tem-
plate 〈P,P ′,H 〉 is given like this:

P =

f(a) → b
f(c(u1,v1)) → g(u1, f(v1))
g(b,u2) → u2
g(d(u3,v3),w3)→ d(u3,g(v3,w3))

 ,P ′ =

f(u4) → f1(u4,b)
f1(a,u5) → u5
f1(c(u6,v6),w6)→ f1(v6,g(w6,u6))
g(b,u7) → u7
g(d(u8,v8),w8) → d(u8,g(v8,w8))

 ,

H = { g(b,u1)≈ g(u1,b), g(g(u2,v2),w2)≈ g(u2,g(v2,w2)) } .

The TRS pattern P is a schema of input programs to be transformed and P ′ is a schema whose instan-
tiations become the output programs. This template is used for a program transformation from recursive
programs to iterative programs. For example, to transform the following TRS

Rsum =

{
sum([]) → 0, sum(x1:y1) → +(x1,sum(y1))
+(0,x2) → x2, +(s(x3),y3) → s(+(x3,y3))

}

- 3 -

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Transformation by Templates for Simply-Typed Term Rewriting

we perform a pattern matching with P against Rsum. Then a term homomorphism ϕ satisfying Rsum =
ϕ(P) is obtained using a matching algorithm [1]. Now the iterative form of Rsum is obtained as

R ′sum = ϕ(P ′) =

sum(x4) → sum1(x4,0)
sum1([],x5) → x5, sum1(x6:y6,z6) → sum1(y6,+(z6,x6)),
+(0,x7) → x7, +(s(y8),z8) → s(+(y8,z8))

 .

The term homomorphism ϕ is also used to generate the following set Esum = ϕ(H) of equations.

Esum =
{

+(0,x1)≈+(x1,0), +(+(x2,v2),w2)≈+(x2,+(v2,w2))
}

These equations are used at the verification of the correctness of transformation not only in the framework
based on term rewriting but also the one based on lambda calculus. We showed that the correctness of
transformation may be (partly) verified by proving properties of term rewriting systems for suitable
templates [1, 2]. All recursive programs must be described as program schemes in the framework of
lambda calculus in order to use fixed point combinator. In contrast, they can be defined by using case
splitting in our framework. Because of universally quantified nature of variables in rewrite rules, second-
order matching algorithms on lambda term are not directly applicable in our setting [1].

Because this framework is based on the first order term rewriting, it is difficult to deal with higher
order programs. In this paper, we extend the framework of program transformation by templates on
first order term rewriting to simply typed term rewriting [6], which is one of the simplest frameworks
of higher order term rewriting. Our key idea is introducing two kinds of function application, one for
function application on STTRSs and one for applying second order matching solution.

The first question to develop such a framework is which term language presenting program schemas
to chose. We first introduce a set of basic types B and a set type variables U . The idea is that in
program templates types are not fixed and type variables contained in templates are instantiated at the
time of concrete transformations. We call simple types over B∪U type pattern and refer types those
over B. Next we assume that each constant and local variable are associated with its type and type
pattern, respectively and each pattern variable is associated with its argument type patterns and result
type pattern. The set of pattern variables whose argument type patterns are τ1, . . . ,τn and result type
patterns are τ is denoted as X τ1×···×τn⇒τ .

Definition 1 (Term pattern) The set Tτ(Σ,X ,V) of term pattern of type pattern τ over constants Σ =⋃
τ∈ST(B) Στ , pattern variable X =

⋃
τ,τ1,...,τn∈ST(B,U)X

τ1×···τn⇒τ and local variables V =
⋃

τ∈ST(B,U)V
τ

is defined as: (1) Στ ∪V τ ⊆ Tτ(Σ,X ,V), (2) s ∈ Tτ1×···×τn→τ(Σ,X ,V) (n≥ 1) and ti ∈ Tτi(Σ,X ,V)
for all i ∈ {1, . . . ,n} imply (s t1 · · · tn) ∈ Tτ(Σ,X ,V), and (3) p ∈ X τ1×···×τn⇒τ (n ≥ 0) and ti ∈
Tτi(Σ,X ,V) for all i ∈ {1, . . . ,n} imply p〈t1, . . . , tn〉 ∈ Tτ(Σ,X ,V).

Here note that two kinds of function application are introduced—one is (s t1 · · · tn) for the function
application on object language (simply typed terms) and the other is p〈t1, . . . , tn〉 for the function applica-
tion to be used instantiating program templates to concrete programs. This is contrast to the second-order
matching frameworks on lambda terms where these two kinds of function application are identified.

Let B= {Nat,List}, U = {α,β ,γ,δ ,ε}, Σ = { []List, :Nat×List→List, @List×List→List, map(Nat→Nat)×List
→List, mapapp(Nat→Nat)×List×List →List }, and X = {a⇒α ,bγ⇒δ ,cε×α⇒α ,dε⇒ε ,eε×γ×δ⇒δ , fα×β×γ⇒δ ,

- 4 -

Y. Chiba & T. Aoto 3

Constant Var1
[A E A,σ] ` σ [α E τ ′,σ] ` σ if σ(α) = τ ′

Var2 [α E τ ′,σ] ` {α := τ ′}◦σ if α 6∈ dom(σ)

Function [τ1 E τ ′1,σ] ` σ ′ [τ2×·· ·× τn→ τ E τ ′2×·· ·× τ ′n→ τ ′,σ ′] ` σ ′′

[τ1× τ2×·· ·× τn→ τ E τ ′1× τ ′2×·· ·× τ ′n→ τ ′,σ] ` σ ′′

Figure 1: Type matching rules

gα×γ⇒δ ,hα×β⇒α , rβ⇒α}. An example of program transformation template is like this:

P =

f〈u,v,w〉 → g〈h〈u,v〉,w〉
g〈a〈〉,u〉 → b〈u〉
g〈c〈u,v〉,w〉 → e〈u,w,g〈v,w〉〉
h〈a〈〉,u〉 → r〈u〉
h〈c〈u,v〉,w〉 → c〈d〈u〉,h〈v,w〉〉

 ,P ′ =

f〈a〈〉,v,w〉 → g〈r〈v〉,w〉
f〈c〈u,v〉,w,z〉 → e〈d〈u〉,z, f〈v,w,z〉〉
g〈a〈〉,u〉 → b〈u〉
g〈c〈u,v〉,w〉 → e〈u,w,g〈v,w〉〉
h〈a〈〉,u〉 → r〈u〉
h〈c〈u,v〉,w〉 → c〈d〈u〉,h〈v,w〉〉

,H = /0

This transformation template can be used to transform simply typed term rewriting systems (STTRSs):

mapapp f xs ys → map f (@ xs ys)
map f [] → []
map f (: x xs) → : (f x) (map f xs)
@ [] ys → ys
@ (: x xs) ys → : x (@ xs ys)

 ⇒

mapapp f [] ys → map f ys
mapapp f (: x xs) ys → : (f x) (mapapp f xs ys)
map f [] → []
map f (: x xs) → : (f x) (map f xs)
@ [] ys → ys
@ (: x xs) ys → : x (@ xs ys)

.

One may wonder why there exist common rules in input and output which seem unnecessary for speci-
fying the transformation. They, however, are prepared to guarantee the correctness of the transformation.
We note that transformations can be applied even if additional rules (other than target rules) are involved.

In the rest of the paper, we show how such a transformation by templates on STTRSs can be done.

2 Pattern matching algorithm

In this section, we present our pattern matching algorithm. Since term patterns possibly contains type
variables, type matching is performed during the pattern matching algorithm on the fly to obtain type
consistent term homomorphisms. Type matching can be done as in the first order matching except that it
has to be checked incrementally. A type substitution is a mapping from type variables to type patterns.

Definition 2 (Type matching) Let τ be a type pattern, τ ′ a type and σ and σ ′ type substitutions. We
write [τ E τ ′,σ] ` σ ′ if there is an inference by applying the rules listed in Figure 1.

A context is a term containing holes�i. Cn(Σ) is the set of contexts containing only holes�1, . . . ,�n.
C〈s1, . . . ,sn〉 is the result of a context C ∈ Cn(Σ) replacing �i by si. We write C ∈ Cτ1×···×τn⇒τ(Σ) if �τi

i
for all�i ∈C and Cτ . A term homomorphism is a mapping ϕ from V ∪X to V ∪C(Σ) satisfying: (1) the
restriction of ϕ on V is an injective mapping from domV (ϕ) = {x ∈ V | ϕ(x) 6= x} to V and (2) ϕ(p) ∈
Cn(Σ) for any p ∈X , where n = arity(p). We put domX (ϕ) = {p ∈X | ϕ(p) 6= p〈�1, . . . ,�arity(p)〉}.

- 5 -

4 Transformation by Templates for Simply-Typed Term Rewriting

Bound 〈S∪{xτ E yτ ′},σ ,ϕ〉
〈S,σ ′,ϕ ∪{x 7→ y}〉

if
ϕ(x) = y∧σ ′ = σ , or
x 6∈ dom(ϕ)∧ y 6∈ range(ϕ)∧ [τ E τ ′,σ] ` σ ′

Remove 〈S∪{ f τ E f τ},σ ,ϕ〉
〈S,σ ,ϕ〉

Split 〈S∪{(s1 · · · sn)
τ E (t1 · · · tn)τ ′},σ ,ϕ〉

〈S∪{si E ti | 1≤ i≤ n},σ ′,ϕ〉
if [τ E τ ′,σ] ` σ ′

Extend 〈S∪{p〈s1, . . . ,sn〉τ EC〈t1, . . . , tn〉τ
′},σ ,ϕ〉

〈{p 7→C}(S∪{si E ti | �i ∈C}),σ ′,ϕ ∪{p 7→C}〉
if [τ E τ ′,σ] ` σ ′

Figure 2: Rules of pattern matching algorithm

〈{g〈c〈u,v〉,w〉 Emap f (: x xs), e〈u,w,g〈v,w〉〉 E : (f x) (map f xs)}, /0, /0〉
=⇒〈{w E f ,c〈u,v〉 E : x xs, e〈u,w,(map w v)〉 E : (f x) (map f xs)},{δ := List} ,{g 7→map �2 �1}〉

=⇒〈{c〈u,v〉 E : x xs, e〈u,w,(map w v)〉 E : (f x) (map f xs)},
{

δ :=List,
γ :=Nat→Nat

}
,

{
w 7→ f ,
g 7→map �2 �1

}
〉

=⇒〈{u E x,v E xs,e〈u,w,(map w v)〉 E : (f x) (map f xs)},

δ :=List,
γ :=Nat→Nat
α :=List

 ,

w 7→ f ,
g 7→map �2 �1
c 7→ : �1 �2

〉
=⇒〈{v E xs,e〈u,w,(map w v)〉 E : (f x) (map f xs)},

{
δ :=List, γ :=Nat→Nat
α :=List, ε :=Nat

}
,

{
w 7→ f , g 7→map �2 �1
c 7→ : �1 �2, u 7→x

}
〉

=⇒〈{e〈u,w,(map w v)〉 E : (f x) (map f xs)},
{

δ :=List, γ :=Nat→Nat
α :=List, ε :=Nat

}
,

w 7→ f , g 7→map �2 �1
c 7→ : �1 �2, u 7→x
v 7→xs

〉
=⇒〈{u E x,w E f ,map w v Emap f xs},

{
δ :=List, γ :=Nat→Nat
α :=List, ε :=Nat

}
,

w 7→ f , g 7→map �2 �1
c 7→ : �1 �2, u 7→x
v 7→xs, e 7→ : (�2 �1) �3

〉
∗

=⇒〈 /0,
{

δ :=List, γ :=Nat→Nat
α :=List, ε :=Nat

}
,

{
w 7→ f , g 7→map �2 �1, c 7→ : �1 �2
u 7→x, v 7→xs, e 7→ : (�2 �1) �3

}
〉

Figure 3: Derivation of ST-Match

ϕ is consistent with a type substitution σ if (1) ϕ(x) ∈ V σ(τ) for any x ∈ V τ ∩domV (ϕ) and (2) ϕ(p) ∈
Cσ(τ1)×···×σ(τn)⇒σ(τ)(Σ) for any p ∈X τ1×···×τn⇒τ ∩domX (ϕ).

A matching pair s E t is a pair of a term pattern s and a term t, and a matching problem is a finite
set of matching pairs. Given a matching problem S, our pattern matching algorithm solves whether there
exist term homomorphism ϕ and type substitution σ such that ϕ is consistent with σ , and ϕ(s) = t holds
for any s E t ∈ S. Our algorithm is given by inference rules acting on a configuration 〈S,σ ,ϕ〉.

Definition 3 (ST-Match) Let =⇒ be a relation on configurations defined by: 〈S,σ ,ϕ〉 =⇒ 〈S′,σ ′,ϕ ′〉
if 〈S,σ ,ϕ〉 is rewritten to 〈S′,σ ′,ϕ ′〉 by applying the rules listed in Figure 2. The reflexive transitive
closure of =⇒ is denoted by ∗

=⇒. The procedure ST-Match is given as follows

Input: a matching problem S

Output: a pair 〈ϕ,σ〉 of a term homomorphism ϕ and a type substitution σ if 〈S, /0, /0〉 ∗
=⇒ 〈 /0,σ ,ϕ〉.

Note that Extend rule select an appropriate context non-deterministically—our algorithm intends con-
ciseness but not to describe how it can be implemented efficiently. In Figure 3, we present a derivation
of ST-Match for a pattern matching problem involved in the program transformation in Section 1.

Theorem 4 (Termination of ST-Match) ST-Match terminates for any input.

- 6 -

Y. Chiba & T. Aoto 5

〈ϕ,σ〉 ` xτ E yτ ′ if ϕ(x) = y∧σ(τ) = τ ′
〈ϕ,σ〉 ` s1 E t1 · · · 〈ϕ,σ〉 ` sn E tn

〈ϕ,σ〉 ` (s1 · · · sn)
τ E (t1 · · · tn)τ ′

if σ(τ) = τ ′

〈ϕ,σ〉 ` cτ E cτ
〈ϕ,σ〉 ` si1 E ti1 · · · 〈ϕ,σ〉 ` sim E tim
〈ϕ,σ〉 ` p〈s1, . . . ,sn〉τ EC〈t1, . . . , tn〉τ

′ if
{
{i1, . . . , im}= {i | �i ∈C},
σ(τ) = τ ′, and ϕ(p) =C

Figure 4: Inference rules for checking solutions of configurations

3 Correctness of pattern matching algorithm

In this section, we show soundness and completeness of ST-Match in order to ensure the correctness of
the algorithm. We say a pair 〈ϕ,σ〉 of a term homomorphism ϕ and a type substitution σ is a solution
of a matching problem S if (1) ϕ is consistent with σ and (2) ϕ(s) = t for all s E t ∈ S.

Definition 5 (Solution of configuration) (a) We write 〈ϕ,σ〉 ` s E t if there is an inference tree by
applying the rules in Figure 4.

(b) A pair 〈ϕ̃, σ̃〉 of a term homomorphism ϕ̃ and a type substitution σ̃ is a solution of a configuration
〈S,σ ,ϕ〉 if (1) 〈ϕ,σ〉 ` s E t for all s E t ∈ S, (2) σ ⊆ σ̃ , and (3) ϕ ⊆ ϕ̃ .

For ensuring type consistency of outputs of ST-Match, we consider the followings.

Lemma 6 (1) Suppose 〈S,σ ,ϕ〉=⇒ 〈S′,σ ′,ϕ ′〉. If x ∈ V τ implies ϕ(x) ∈ V σ(τ) for any x ∈ domV (ϕ),
then x ∈ V τ implies ϕ ′(x) ∈ V σ(τ) for any x ∈ domV (ϕ ′). (2) Suppose 〈ϕ̃, σ̃〉 ` s E t. p ∈X τ1×···×τn⇒τ

implies ϕ̃(p) ∈ Cσ̃(τ1)×···×σ̃(τn)⇒σ̃(τ)(Σ) for any p ∈X (s)∩domX (ϕ̃).

Next lemma can be shown by using straightforward case splitting of applied rules.

Lemma 7 Suppose 〈S,σ ,ϕ〉=⇒ 〈S′,σ ′,ϕ ′〉 and x ∈ V τ implies ϕ(x) ∈ V σ(τ) for any x ∈ domV (ϕ). If
〈ϕ̃, σ̃〉 is a solution of 〈S′,σ ′,ϕ ′〉, then 〈ϕ̃, σ̃〉 is also a solution of 〈S,σ ,ϕ〉.

From lemmas above, we obtain the following result of soundness.

Theorem 8 (Soundness of ST-Match) If ST-Match produces 〈ϕ̃, σ̃〉 for an input S, then 〈ϕ̃, σ̃〉 is a
solution of S.

In order to show completeness of ST-Match, we show the following lemmas.

Lemma 9 Let 〈S,σ ,ϕ〉 be a configuration with S 6= /0. If 〈ϕ̃, σ̃〉 is a solution of 〈S,σ ,ϕ〉, then there exists
a solution 〈S′,σ ′,ϕ ′〉 such that (1) 〈S,σ ,ϕ〉=⇒ 〈S′,σ ′,ϕ ′〉 and (2) 〈ϕ̃, σ̃〉 is a solution of 〈S′,σ ′,ϕ ′〉.

Lemma 10 Let 〈ϕ̃, σ̃〉 be a solution of a configuration 〈S,σ ,ϕ〉. If there exist a term homomorphism ϕ ′

and a type substitution σ ′ such that 〈S,σ ,ϕ〉=⇒ 〈 /0,σ ′,ϕ ′〉, then (1) σ ′ ⊆ σ̃ , and (2) ϕ ′ ⊆ ϕ̃ .

We now obtain the following theorem from lemmas above.

Theorem 11 (Completeness of ST-Match) Let Φ be the set of outputs of ST-Match for input matching
problem S. If 〈ϕ,σ〉 is a solution of S, then there exists 〈ϕ̃, σ̃〉 ∈Φ such that ϕ̃ ⊆ ϕ and σ̃ ⊆ σ .

- 7 -

6 Transformation by Templates for Simply-Typed Term Rewriting

References
[1] Y. Chiba, T. Aoto & Y. Toyama (2005): Program transformation by templates based on term rewriting. In:

Proc. of PPDP 2005, ACM Press, pp. 59–69.
[2] Y. Chiba, T. Aoto & Y. Toyama (2010): Program transformation templates for tupling based on term rewriting.

IEICE Transactions 93-D(5), pp. 963–973.
[3] R. Curien, Z. Qian & H. Shi (1996): Efficient second-order matching. In: Proc. of RTA 1996, LNCS 1103,

Springer-Verlag, pp. 317–331.
[4] G. Huet & B. Lang (1978): Proving and applying program transformations expressed with second order

patterns. Acta Informatica 11, pp. 31–55.
[5] O. de Moor & G. Sittampalam (2001): Higher-order matching for program transformation. TCS 269(1–2),

pp. 135–162.
[6] T. Yamada (2001): Confluence and termination of simply typed term rewriting systems. In: Proc. of RTA 2001,

LNCS 2051, Springer-Verlag, pp. 338–352.
[7] T. Yokoyama, Z. Hu & M. Takeichi (2004): Deterministic second-order patterns. IPL 89(6), pp. 309–314.

- 8 -

Submitted to:
HOR 2012

c© V. van Oostrom
This work is licensed under the
Creative Commons Attribution License.

Confluence via Critical Valleys

Vincent van Oostrom
Department of Philosophy, Utrecht University, The Netherlands

Vincent.vanOostrom@phil.uu.nl

A recent result due to Hirokawa and Middeldorp expresses that a left-linear first-order term rewriting
systems is confluent, if its critical pairs are joinable and its critical pair system, comprising the steps
of the critical peaks as rules, is relatively terminating with respect to the original term rewriting
system. That result captures both confluence of orthogonal first-order term rewriting systems and of
terminating left-linear first-order term rewritings having joinable critical pairs. Here we extend it in
three ways:
• we generalise the result from first- to higher-order rewriting;
• we show that instead of the critical pair system, it suffices to consider only a critical valley

system, comprising as rules reductions from the source of a critical peak to the targets of the
first multisteps (if these exist) of the valley completing the peak; and

• we show that development closed critical pairs, where the target of the inner step of a critical
peak reduces in a multistep to the target of the outer step of the peak, need not be considered
when constructing the critical valley system.

1 Confluence via Critical Valleys

Let a critical valley system for a locally confluent term rewriting system R be a system S over the same
signature comprising for each critical peak s0←R,root t→R r0 such that not s0 ◦←−R r0, and some valley
s0 ◦−→n

R sn = rm ◦←−m
R r0 completing it, rules t→ s1 if n ≥ 1 and t→ r1 if m ≥ 1. Referring the reader

to [2] for no(ta)tions and results used, we generalize [1, Thm. 16 and p. 497]:

Theorem (Critical Valley). A left-linear locally confluent first- or higher-order term rewriting system R
is confluent if S /R is terminating for some critical valley system S for R.

Proof. Since→R ⊆ ◦−→R ⊆�R holds for all term rewriting systems, it suffices [4, Proposition 1.1.11
and Lemma 11.6.24] to show confluence of ◦−→R , for which in turn it suffices [3, Theorem 3] to show
that its labelling defined by t It̂ s if t̂ �R t ◦−→R s, is decreasing with respect to the order (S /R)+.
In particular, we show that for given t̂i, a peak t0 Jt̂0 t It̂1 t1 contracting the multi-redexes U0,U1, can
be completed into a decreasing diagram by a conversion of shape It̂1 ·JI

∗ ·Jt̂0 , where all steps in the
conversion JI∗ have labels S /R-smaller than a t̂i, by induction on the amount of overlap between the
patterns of redexes in U0,U1:
(0) Then U0∪U1 is a set of non-overlapping redexes and contracting them in t yields a common ◦−→-
reduct t ′ of the ti by the Triangle Theorem 10 of [2], so t0 It̂1 t ′ Jt̂0 t1, since t̂i�R t�R t1−i.
(>0) Let ui ∈Ui with s0←u0 t →u1 r0 be induced by a critical peak s0←R t →R r0 with, w.l.o.g., u1
innermost, and distinguish cases on whether s0 ◦←−R r0 or not:
(>) By Claim 23 of [2] there exists a peak t0 Jt̂0 r0 It̂1 t1 contracting multi-redexes U ′0,U ′1 having a
smaller amount of overlap than U0,U1 had, and we conclude by the induction hypothesis.
(⊥) There is a valley s0 ◦−→n

R sn = rm ◦←−m
R r0 such that t→ s1 if n≥ 1 and t→ r1 if m≥ 1.

- 9 -

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Confluence via Critical Valleys

If n≥ 1, the induction hypothesis can be applied to t0 Jt̂0 s0 It̂1 s1 as t and U0−{u0} do not overlap
in t by innermostness of u1 and the tree-structure of terms so neither do their descendants in s1 after u0,
yielding a decreasing diagram t0 It̂1 ·JI

∗ ·Jt̂0 s1 hence, relabeling its last step, also t0 It̂1 ·JI
∗ ·Js1 s1,

where all steps except the first have labels S /R-smaller than a t̂i.
If m≥ 1 the induction hypothesis can be applied to r1 Jt̂0 r0 It̂1 t1 as t and V0 overlap more in t than

r0 and the residuals of V0 after v0 do in r0 by innermostness of t and the tree-structure of terms, yielding
a decreasing diagram r1 It̂1 ·JI

∗ ·Jt̂0 t1 hence, relabeling its first step, also r1 Ir1 ·JI∗ ·Jt̂0 t1 where
all steps except the last have labels S /R-smaller than a t̂i.

• If n,m≥ 1 then we may join the above conversions by the following labelling induced by a suffix
of the local confluence valley s1In−1

s1
sn = rmJm−1

r1
r1;

• If n = 0 and m≥ 1, then we may join t0 JJr1 r1 and the second conversion above;

• If n≥ 1 and m = 0, then we may join the first conversion above and s1 IIs1 t0; and

• The case that n = 0 = m cannot occur as then s0 ◦←−R r0.

References
[1] Nao Hirokawa & Aart Middeldorp (2010): Decreasing diagrams and relative termination. In: Proceedings

of IJCAR 2010, Lecture Notes in Computer Science 6173, Springer, pp. 487–501. doi:10.1007/978-3-642-
14203-1 41.

[2] Vincent van Oostrom (1997): Developing developments. Theoretical Computer Science 175(1), pp. 159–181.
doi:10.1016/S0304-3975(96)00173-9.

[3] Vincent van Oostrom (2008): Confluence by Decreasing Diagrams, Converted. In Andrei Voronkov,
editor: Rewriting Techniques and Applications, 19th International Conference, RTA 2008, Hagenberg,
Austria, July 2007. Proceedings, Lecture Notes in Computer Science 5117, Springer, pp. 306–320.
(doi:10.1007/978-3-540-70590-1 21).

[4] Terese (2003): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science 55, Cambridge
University Press.

- 10 -

http://dx.doi.org/10.1007/978-3-642-14203-1_41
http://dx.doi.org/10.1007/978-3-642-14203-1_41
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.2277/0521391156

Preliminary Report. Final version to appear in:
HOR 2012

c© Jean-Pierre Jouannaud & Jianqi Li
This work is licensed under the
Creative Commons Attribution License.

Termination of higher-order rewriting in dependent type
calculi∗

Jean-Pierre Jouannaud
INRIA-LIAMA
Beijing, China

Software Chair, Tsinghua University
Beijing, China

jeanpierre.jouannaud@gmail.com

Jianqi Li
Tsinghua University

Beijing, China

jianqili@gmail.com

Automatable methods exist for showing termination of either first-order or higher-order rewrite
rules, in particular by defining syntactic orderings on the set of terms. These methods assume the
absence of fully polymorphic as well as of dependent types. In this paper, we consider the case
of dependent type calculi such as Edinburgh’s Logical Framework. We define a transformation
from LF-terms to terms of a lambda-calculus typable in a functional type discipline augmented
with type constructors, which preserves both termination and non-termination. Termination of
rewrite rules in the source language can then be proved by comparing their transforms in the target
language with the computability path ordering of Blanqui, Jouannaud and Rubio.

1 Introduction

Methods exist for showing termination of higher-order rewriting based on plain pattern matching, in
particular by defining syntactic orderings on terms. These methods assume absence of fully polymor-
phic types and of dependent types as well. In this paper, we consider the (much simpler indeed) case of
dependent type calculi such as Edinburgh’s LF [5], a Logical Framework rich enough for encoding other
logical systems. We define a well-founded order on the set of LF-terms via a transformation to terms of
a lambda-calculus typable in a functional type discipline augmented with (algebraic) type constructors.
Since the transformation preserves reductions, termination in the target language implies termination
in the source language.

LF is a type theory of Barendregt’s cube with monomorphic dependent types and constant type
constructors. We consider here a minor extension enjoying function symbols and type constructors
with arities, which is convenient for expressing dependent rewriting. The target language is a simply-
typed lambda-calculus enriched with function symbols and type constructors with arities. This
choices has 3 advantages: the target vocabulary is as close as possible from the source vocabulary; the
transformed rules can be compared in the computability path ordering (CPO) of Blanqui, Jouannaud
and Rubio [3]; the technique can be adapted to show termination of higher-order rewriting based on
higher-order pattern matching [7].

∗Funded by Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation
2011-9, National Basic Research Program of China(973 Program) 2010CB328003.

- 11 -

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Termination of higher-order rewriting in dependent type calculi

2 Edinburgh Logical Framework

2.1 Terms

Let S be the set of data types (constants), V be the set of variables. Type constants have arity 0 while
their kind may be functional. Object constant have an arity upper-indexing their name, a facility later
used by CPO. There are three sorts of terms in LF [5], objects, types (or type families), and kinds. The
syntax of LF-expressions is given by following grammar:

Kinds K := TYPE | Πx : A.K
Type families A, B := a | Πx : A.B | λx : A.B | A M
Objects M , N := x | λx : A.M |M N | f n (M 1, ..., M n)

The application M N may also be written as @(M , N). We assume the notion of free and bound
variables in a term U , denoted respectively by FV(U) and BV(U). We consider terms as trees which nodes
are labelled by the term constructors, λx and Πx being considered as unary constructors. A position
in a term is a concatenation of natural numbers describing the path to a given node, concatenation
being denoted by ”·”. We write u |p for the subterm of u at position p , and u [v]p for the term obtained
by replacement of u |p by v at p .

2.2 Typing judgements

We assume the notion of (non-capturing) substitution, which application is written in postfix form.
In LF, all expressions are typed, objects by types and types by kinds, kinds themselves being checked
for validity (which is equivalent to typing them all by a special constant which cannot itself be typed).
Typing environment are pairsΣ ; Γmade of a signature and a context. Contexts Γ := nil| Γ,x : A define
the variables while signatures Σ := nil| Σ, a : K | Σ, f n : A define the constants. What distinguishes
dependent from non-dependent calculi is that the order of constants or variables in the environment
is determined by their types. This has important consequences on typing, especially in the expression
of the so-called substitution lemma.

Five kinds of judgement are recursively defined by the LF type system given in part at Figure 1:
`S Σ for “Σ is a valid signature”; Σ`C Γ for “Γ is a valid context assuming `S Σ”; Σ ; Γ`K K for “K is a
valid kind assuming Σ`C Γ”; Σ ; Γ`F A : K for “A has kind K assuming Σ ; Γ`K K ”; Σ;Γ`OM : A for
“M has type A assuming Σ ; Γ`F A : K ”; and Σ ; Γ`C : D as shorthand for any of the previous two
judgements. Where the notation M{N /x} denoting the (capture avoiding) substitution of the free
variable x by N in M , A ◦{M 1/x1, ..., M n/xn} the sequential substitutions,≡ the equivalence relation
derived from the β-reduction rules of LF.

Given a valid signature Σ and a context Γ valid in Σ, the set TΣ of valid terms is the (disjoint) union
of the setsK of valid kinds,F of valid type families andO of valid objects.

Our dependent calculus will be refered to as LFΣ to stress the signature Σ (LF for short). In
dependent type calculi, applying the substitution lemma several times introduces naturally an order
on the application of elementary substitutions. We use the notation M ◦{M i /x i}{1,...,n} to denote
the sequential application to M of the elementary substitutions {M 1/x1}, ..., {M n/xn} in this order ◦
denotes the postfix application of a substitution executed in a sequential way.

In LF, the usual rule schemata of the lambda calculus apply at both the object and type levels,
making four different rules. In particular: (λx : A.M)N →βF M{N /x} and (λx : A.B)M →βO B{M/x}.
We write A ≡ B and say that A and B are convertible if they are in the least monotone equivalence
generated by the LF rules.

- 12 -

Jean-Pierre Jouannaud & Jianqi Li 3

Sig. : [CONST]
`S Σ Σ ; nil`F A i , A : TYPE

`S Σ, f n : Π{x i : A i}{1,...,n}.A
f n 6∈ dom (Σ)

Kinds : [UNIV]
Σ`C Γ

Σ ; Γ`KTYPE
[PROD]

Σ ; Γ, x : A`K K

Σ ; Γ`KΠx : A.K

Types : [PROD]
Σ ; Γ, x : A`F B : TYPE

Σ ; Γ`F Πx : A.B : TYPE
[ABS]

Σ ; Γ, x : A`F B : K

Σ ; Γ`F λx : A.B : Πx : A.K

[APP]
Σ ; Γ`F A : Πx : B.K Σ;Γ`OM : B

Σ ; Γ`F A M : K {M/x}

Obj. : [CONV]
Σ;Γ`OM : A Σ ; Γ`F A ′ : TYPE

Σ;Γ`OM : A ′
A ≡ A′

[ABS]
Σ;Γ, x : A`OM : B

Σ;Γ`Oλx : A.M : Πx : A.B
[APP]

Σ;Γ`OM : Πx : A.B Σ;Γ`ON : A

Σ;Γ`OM N : B{N /x}

[FUN]
Σ;Γ`OM i : A i{M j /x j }{1,...,i−1} i ∈ {1, ..., n}
Σ;Γ`O f n (M 1, ..., M n) : A ◦{M i /x i}{1,...,n}

f n : Π{x i : A i}{1,...,n}.A ∈ Σ

Figure 1: Fragment of LF Typing rules

2.3 Dependent rewriting

Definition 1 (Plain dependent rewriting system) Given a signature Σ, a plain dependent rewriting
system is a set {∆i ` l i → ri : A i}i of quadruples made for every index i of a context∆i , a left-hand side
object term l i , a right-hand side object term ri , and a type A i such thatΣ;∆i`Ol i : A i andΣ;∆i`Ori : A i .

Given a rewriting system R, one step rewriting Σ ; Γ`R s −→p
R t is a relation defined as:

1. s and t are types or objects which are typable under Σ; Γ.

2. ∆ ` l → r : A ∈ R, where∆ and Γ have no variable in common.

3. s = s [l ◦γ]p and t = s [r ◦γ]p .

where γ is a dependent substitution ordered according to∆.

3 Flattening

Encoding LF into the simply-typed λ-calculus is a well-known technique already used by Harper,
Honsell and Plotkin in their seminal LF paper. It allows to reduce the strong normalization property
of dependently typed calculi problem to that of a simpler calculus without dependent types. The
encoding is based on erasing type dependencies, and recording them via wrappers. The technique has
been used successfully for many variants of the Calculus of Constructions [4].

We describe now piece by piece the specific transformation used here from LF terms to λρ(Σ), our
simply typed target language which signature built from Σ is ρ(Σ). We start with types.

TS = ∗ | a | TS →TS , where a : K ∈ Σ and ∗ is a new constant type.

We then define an erasure transformation for families, kinds, and environments:

- 13 -

4 Termination of higher-order rewriting in dependent type calculi

(1)|TYPE| = ∗ (2)|Πx : A.K | = |A| → |K | (3)|a | = a
(4)|Πx : A.B | = |A| → |B | (5)|λx : A.B | = |B | (6)|A M | = |A|
|Σ| = {a : |K | | a : K ∈ Σ}

∪ { f n : |A1|× ...×|An | → |A| | f n : Π{x i : A i}{1,...,n}.A ∈ Σ}
|Γ| = {x : |A| | x : A ∈ Γ}

We extend the signature Σ by algebraic symbols that record in their name any important erased
type information, using lf and lo to encode abstractions at the family and object levels:

ρ(Σ) = |Σ|∪{piσ : ∗× (σ→∗)→∗|σ ∈ TS}∪{lf σ, loσ : ∗×σ→ σ|σ ∈ TS}
The set of raw termsAρ(Σ) of λρ(Σ) is then defined by the following grammar:
s , t , t i = x | λx .t |@(s t) | g (t1, ..., tn), where g ∈ ρ(Σ).
Here comes the transformation from source to target language:

(1) [a : K] = a
(2) [Πx : A.B : TYPE] = pi|A|([A], λx : |A|.[B])
(3) [λx : A.B : Πx : A.K] = λx : |A|.lf |K |([A], [B])
(4) [A M : K] = @([A] [M])
(5) [x : A] = x
(6) [λx : A.M : Πx : A.B] = λx : |A|.lo|B |([A], [M])
(7) [M N : A] = @([M] [N])
(8) [f n (M 1, ..., M n) : A] = f n ([M 1], ..., [M n])

and the type system in the target language:

[1]
ρ(Σ) ;∆` x : σ

x : σ ∈∆ [3]
ρ(Σ) ;∆` s : σ→ τ ρ(Σ) ;∆` t : σ

ρ(Σ) ;∆` @(s t) : τ

[2]
ρ(Σ) ;∆, x : σ` t : τ

ρ(Σ) ;∆` λx : σ.t : σ→ τ
[4]

ρ(Σ) ;∆` s i : σi

ρ(Σ) ;∆` g (s1, ..., sn) : σ

g n : σ1× . . .×σn

→ σ ∈ ρ(Σ)

Figure 2: Typing rules for λρ(Σ) where a context∆ is made of pairs (x ∈ V : σi ∈ TS)

We end up our journey with the translations [βη] of βη-reductions in λρ(Σ):
@((λx : |A|.lf |K |([A], [B])) [N])*βF [B]{[N]/x} if (λx : A.B : Πx : A.K)N valid in LFΣ

@((λx : |A|.lo|B |([A], [M])) [N])*βO [M]{[N]/x} if (λx : A.M : Πx : A.B)N valid in LFΣ

(λx : |A|.lf |K |([A], @([B] x)))*ηF [B] if λx : A.@(B x) : K valid in LFΣ, x not free in B

(λx : |A|.lo|B |([A], @([M] x)))*ηO [M] if λx : A.@(M x) : B valid in LFΣ, x is not free in M

Theorem 2 (Correctness) Let Σ be a signature and R be a dependent term rewriting system. Then R is
terminating in LFΣ iff [Rβη] is terminating in λρ(Σ).

4 Example illustrating the transformation and CPO-comparison

We recall the fragment of the definition of CPO needed for the coming example.

Definition 3 (Primitive CPO) Assume∆ `ρ(Σ) s : σ and ∆ `ρ(Σ) t : τ, then s : σ �X t : τ iff (a) t ∈ X
or either of the following cases holds:

1. s = f (s̄)with f ∈ ρ(Σ) and either of

- 14 -

Jean-Pierre Jouannaud & Jianqi Li 5

(a) t ∈ X

(b) t = g (t̄)with f =ρ(Σ) g ∈ ρ(Σ) an d s̄ (�TS)m u l t̄

(c) t = g (t̄)with f >ρ(Σ) g ∈ ρ(Σ)̧ u p{@} and s �X t̄

(d) t = λy : β .w and s �X∪{z} w{z/y } for z : β fresh

(e) u �TS t for some u ∈ s̄

Here is our example, we give first the signatures and then the rewriting rules:
na t : TYPE 0 : na t +1 : Πx : na t .na t
Li s t : Πm : na t .TYPE ni l : Li s t 0
cons : Π{x : na t , m : na t , l : Li s t m}.Li s t m +1
m a p : Π{m : na t , l : Li s t m}.(Π f : Π{x : na t }.na t .Li s t m)
foldr : Π{m : na t , l : l i s t m , y : na t }.(Πg : Π{x1 : na t , x2 : na t }.na t .na t)

1. m a p (0, l)→ λ f : Π{x : na t }.na t .ni l
2. m a p (m +1, cons (m , x , l))→ λ f : Π{x : na t }.na t .cons ((f x), m a p (m , l))
3. foldr(0, l , y)→ λg : Π{x1 : na t , x2 : na t }.na t .y
4. foldr(m +1, cons (m , z , l), y)→ λg : Π{x1 : na t , x2 : na t }.na t .(g z (foldr(m , l , y) g))

Here are the typing constraints and precedence on constants needed to carry out the example:
Li s t >TS na t foldr >m a p > cons > ni l > lf σ > loτ > Li s t > na t , whereσ, τ ∈ TS

and lf σ > lf τ, loσ > loτ for anyσ >TS τ
Note that type constant from the dependent world become both type constants and term constants

in the flattened world. We restrict our attention to rule 4, which translation is:
[l 4] = foldr(m +1, cons (m , z , l), y)
[r4] = λg : na t → na t → na t .lona t (lf na t (na t , λx1 : na t .lf na t (na t , λx2 : na t .na t)),

@(@(g z)@(foldr(m , l , y) g)))
The initial CPO judgement [l 4]�TS [r4] is reduced to goal 1 by CPO 1(d).

1. [l 4]�{g } lona t (lf na t (na t , λx1 : na t .lf na t (na t , λx2 : na t .na t)),
@(@(g z)@(foldr(m , l , y) g))). Since foldr > lona t , CPO 1(c) yields goals 2 and 3;

2. [l 4]�{g } lf na t (na t , λx1 : na t .lf na t (na t , λx2 : na t .na t)), which yields by CPO 1(c);

3. [l 4]�{g } @(@(g z)@(foldr(m , l , y) g)), which yields goals 6 and 7 by CPO 1(c);

4. [l 4]�{g } na t , which holds by foldr > na t and CPO 1(c);

5. [l 4]�{g } λx1 : na t .lf na t (na t , λx2 : na t .na t). By CPO 1(d), which reduces to goal 8;

6. [l 4]�{g } @(g z), which yields goals 9 and 10 by CPO 1(c);

7. [l 4]�{g } @(foldr(m , l , y) g), which yields goals 11 and 12 by CPO 1(c);

8. [l 4]�{g , x1} lf na t (na t , λx2 : na t .na t). By CPO 1(c), which reduces to goal 13 and 14;

9. [l 4]�{g } g , which holds by CPO 1(a);

10. [l 4]�{g } z , with Li s t >TS na t , which holds by successively use CPO 1(e) twice;

11. [l 4]�{g } foldr(m , l , y), which yields goals 15 and 16 by CPO 1(b);

12. [l 4]�{g } g , which holds by CPO 1(a);

13. [l 4]�{g , x1} na t , which holds by foldr > na t and CPO 1(c);

14. [l 4]�{g , x1} λx2 : na t .na t , which reduce to goal 17 by CPO 1(d);

15. m +1�TS m , which holds by na t =TS na t and CPO 1(e);

16. cons (m , z , l)�TS l , which holds by Li s t =TS Li s t and CPO 1(e);

17. [l 4]�{g , x1, x2} na t , which holds by foldr > na t and CPO 1(c). DONE.

- 15 -

6 Termination of higher-order rewriting in dependent type calculi

5 Conclusion

The reader may wonder why not using the computational closure introduced in [2] for the simply
typed λ-calculus, and then developped along the years by Blanqui [1]. Indeed, the computational
closure captures the initial version of HORPO [6], but is not known to include CPO, although it is
likely to be the case, at least for type-preserving CPO-reductions. A more fundamental reason is that,
unlike CPO, the computational closure is not a syntax-directed definition, hence has limited practical
usage. CPO can therefore be seen as the best possible, computionally efficient approximation of the
computational closure.

The next (easy) step in this work will be to define CPO directly on LF terms, and prove it is SN by
using our transformation from LF to λρ(Σ).

References

[1] Frédéric Blanqui (2007): Computability Closure: Ten Years Later. In Hubert Comon-Lundh, Claude Kirchner
& Hélène Kirchner, editors: Rewriting, Computation and Proof, Essays Dedicated to Jean-Pierre Jouannaud
on the Occasion of His 60th Birthday, LNCS 4600, Springer-Verlag, pp. 68–88.

[2] Frédéric Blanqui, Jean-Pierre Jouannaud & Mitsuhiro Okada (1999): The Calculus of algebraic Constructions.
In P. Narendran & M. Rusinowitch, editors: Proceedings of the 10th International Conference on Rewriting
Techniques and Applications (RTA’99), LNCS 1631, Springer-Verlag, Berlin, pp. 301–316.

[3] Frédéric Blanqui, Jean-Pierre Jouannaud & Albert Rubio (2008): The computability path ordering: The end of
a quest. In Michael Kaminski & Simone Martini, editors: Proceedings of the 17th Annual Conference of the
European Association for Computer Science Logic (CSL’08), LNCS 5213, Springer, Berlin, pp. 1–14.

[4] Herman Geuvers & Mark-Jan Nederhof (1991): Modular Proof of Strong Normalization for the Calculus of
Constructions. Journal of Functional Programming 1(2), pp. 155–189.

[5] Robert Harper, Furio Honsell & Gordon Plotkin (1993): A Framework for Defining Logics. Journal of the ACM
40(1), pp. 143–184.

[6] Jean-Pierre Jouannaud & Albert Rubio (1999): The higher-order recursive path ordering. In Giuseppe Longo,
editor: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS’99), IEEE
Computer Society, pp. 402–411.

[7] Jean-Pierre Jouannaud & Albert Rubio (2006): Higher-order orderings for normal rewriting. In Frank Pfenning,
editor: Proceedings of the 17th International Conference on Rewriting Techniques and Applications (RTA’06),
LNCS 4098, Springer-Verlag, Berlin, pp. 387–399.

- 16 -

6th International Workshop on Higher-Order Rewriting
June 2, 2012, Nagoya

This work is licensed under the Creative Commons
Attribution-No Derivative Works License.

Higher Order Rewriting for Real Programmers

Kristoffer H. Rose
IBM Thomas J. Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598, USA; 〈krisrose@us.ibm.com〉

We report on the mechanisms and patterns of the CRSX system specifically for supporting “real” pro-
gramming in the form of compiler systems by programmers with cursory training in formal systems,
in the hope of a discussion of how higher order rewriting can be used more widely.

1 Introduction

We are presently leading the implementation of a “real” compiler in IBM using the CRSX “combinatory
reduction systems with extensions” higher order rewriting tool for building compilers [10]. A part of
this task is to transfer knowledge of how to program and maintain systems written using higher order
rewriting to production programmers. For most programmers the rewriting foundations remain theoretic
issues that have at best been briefly mentioned in their education, e.g., rewriting may have been presented
as an explanation for how pattern matching works or how invariants of programs are proven by case
analysis, with the obvious qualification that real programs always make choices sequentially if they are
more complex than a single table lookup. Or λ calculus might be mentioned as the theory behind inner
classes or closures, except of course for the fact that in real programming languages, closures can only
capture very simple constants and possibly a few restricted pointer values from the context where they
are created.

This leads to the fact that in the few areas where programmers do need to think about terms and
bindings, a separate collection of techniques is developed to deal well with these issues. For the area
that CRSX is focused on, compiler writing, the issues for example show up when compiler writers go to
great lengths to express creation and simple manipulations of syntax trees, c.f. [1, §5.2] or [2, §4], and
indeed most popular parser generators include special notation for creating and manipulating syntax tree
nodes [7, 11, 9]. Another example is that each intermediate stage of the compiler uses a distinct notion of
binding such a the symbol table used during parsing and analysis; locations used for intermediate code
and optimizations; labels, registers, and even flow edge, used for code generation.

Indeed the tuning of each of these areas to a craft (or even fine art) has led to significant resistance to
writing “real” compilers based on formal methods, as witnessed by the relative lack of success to intro-
duce this to the mainstream compiler writing culture in spite of a significant effort invested in dedicated
projects with advanced tools targeted at the task [8, 3, 4, 5]. We find it fair to say that the cited systems
have failed to achieve widespread adoption for three reasons (to a varying degree in each case):

Ambition: Only require a semantic specification of the meaning of the language to implement and
automatically deduce the compiler program.

Abstraction: Require deep understanding of the underlying formalism before being useful to the pro-
grammer.

Generality: Focus on general logic or other foundational principles and less on support for specific data
structures needed for compiler writing (such as symbol tables and hash encodings).

In this discussion paper we will explain how CRSX is attempting to mitigate these issues, and hope to
spawn a discussion of whether this can lead to a revival of the use of higher order rewriting techniques

- 17 -

http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/

2 HOR for Real Programmers

in compiler rewriting as well as other areas of programming where the tasks to solve involve notions
related to manipulation of trees with some kind of binding or structured references.

2 Example CRSX Issues

In this section we illustrate how several aspects of CRSX programming have been explained to engineers
in our compiler project.

2.1 Notation. All rewriting examples are given in CRSX [10] syntax (we make a point of not introducing
it formally here) except that font style is significant, using METAn and Primitive, where actual CRSX

syntax has meta-variables #meta_n and primitives $Primitive, respectively.

To start, first order term rewriting is quite easy to explain.

2.2 Example. Consider the following CRSX sorts for expressions (E) and instructions (I)

E ::= Plus[E,E] | Zero ;
I ::= PLUS | PUSHZERO | I[List[I]] ;

The traditional compositional translation from expressions to instructions is expressed by

CodeOf[E] :: I ;
CodeOfZero: CodeOf[Zero]→PUSHZERO ;
CodeOfPlus: CodeOf[Plus[LEFT,RIGHT]]→ I[(CodeOf[LEFT]; CodeOf[RIGHT]; PLUS;)];

We explain that words like CodeOf and Plus are defined constructors with arguments in [. . .]s, and words
like LEFT are meta-variables that stand for whatever is really found as the appropriate subterm; meta-
variables in general occur precisely once on each side of the arrow. The forms for each sort must be
declared (we shall extend them later), and each function (or “scheme”) must be declared with a separate
sort declaration: here we declare (with ::) that CodeOf must take an E argument and produce as its
result an I instruction.1 Specifically, each rule has a name (CodeOfZero, CodeOfPlus), a pattern left of
the arrow that describes subterms the rule can fire for, and the contraction right of the arrow with the
replacement subterm. Furthermore, in CRSX we write lists of things like in C with each member of the
list terminated by a semicolon (;) with sort List[MEMBERSORT]. Rewriting proceeds by finding a place
where a rule can fire and then update the term at that place with what is obtained by the rewriting rule:
for CodeOfPlus a CodeOf directly applied to a Plus tree node fires the rule, replacing the CodeOf node
with the instruction to the right.

2.3 Discussion (restrictions). From a formal rewriting perspecive, the explanation in Example 2.2 only
works because the example obeys some severe restrictions:

1. the rule is completely compositional and linear (both left and right);

2. there is a clear separation of “function” (CodeOf) and “data” (Plus) symbols;

3. the rule does not involve any binders;

4. the rule does not depend on something in the context;

5. the rule is closed, i.e., pattern and contraction have no (common) free variables;

6. the rule contraction does not introduce any fresh variables;

1Indeed the declaration is how CRSX distinguishes function and data symbols, thus encouraging (but not enforcing) con-
structor systems.

- 18 -

K.H. Rose 3

7. there is no substitution; and

8. there are no nested applications.

The rest of this section shows patterns for breaking each restriction and how it is explained for CRSX

programmers; for space reasons the explanation is compacted but I hope they lead to a discussion of
whether there are better ways to implement and/or explain these (and more) real life examples, however, it
is important to understand that the majority of rules needed for a typical compiler follow the restrictions.

2.4 Example. Restriction 1 is frequently broken when analysis rules are in play, like

−[Copy[PROG]]: Compile[PROG]→Optimize[Analyze[PROG], PROG] ;

The Compile rule translates a to an Optimize construct where the first argument is obtained by an Analyze
stage and the second is a separate copy of the original PROG, which is why we explicitly declare that it
is copied.

2.5 Example. A typical example where we break restriction 2 is if we add rules like

PlusZero[Mixed[Plus]]: Plus[Zero,RIGHT]→RIGHT ;

The Mixed[Plus] option ensures that the system does not protest that a data symbol (Plus) is used at the
root of a pattern but instead invokes a completion procedure to make sure that the rule fires when it can
before the regular functional patterns (like CodeOf) are investigated.2

2.6 Example. If the input syntax tree is first order (e.g., when using a non-CRSX parser generator) then
we may want to maintain a symbol table to introduce proper binders with declarations like the following,
breaking restrictions 3 and 4 explicitly. Consider the sorts

RAWE ::= RawLet[RAWE, String, RAWE] | RawVar[String] ;
E ::= Let[E, v: E . E] | v ;

The first declaration defines first order “raw” syntax trees where variables are still String tokens, the
second how the desired higher order syntax trees have Let expressions that use a proper CRSX binder (v)
of E sort and explicitly have to declare that an E can be a syntactic variable with the “ |v” choice. We
then add the scheme N for translating raw to “cooked” expressions:

{String : E} N[RAWE] :: E ;
NLet: {ST} N[RawLet[VAL, NM, BODY]]→Let[N[VAL], v . {ST; NM :v} N[BODY]] ;
NVar[Discard[ST,NM]]: {ST; NM : VAR} N[RawVar[NM]]→VAR ;
NNoVar: {ST; ¬NM} N[RawVar[NM]]→$[Error, $[: ,"Unknown␣variable:␣",NM]] ;

The sort declaration for the N function explicitly states that it requires a symbol table parameter (written
as a {. . .} prefix) that maps String tokens to E terms (really syntactic variables). The NLet rule uses
the symbol table {ST} and introduces a new symbol: the contraction creates the binder v scoped over
the translation of BODY using N with a symbol table extended to map NM to v. NVar also accesses the
symbol table but further looks up a raw NM and, if a variable VAR corresponds to it, then that is the result
rule. This is a specific kind of non-left-linearity allowed: a meta-variable of String sort matched in the
normal part of a pattern can be used in the immediately preceding environment part to look up the value
corresponding to the constant. Since we are not reusing any of ST or NM in the contraction we must
explicitly break restriction 1 with a Discard option. Finally, rule NNoVar handles the (orthogonal) case
where NM has not been declared (and reports an error in that case using the built in $[Error, . . .]).

2Such optimization rules typically break confluence but, with proper notification of the problematic overlaps, completion in
fact usually works and gives the result that the compiler writer expects.

- 19 -

4 HOR for Real Programmers

2.7 Example. Restrictions 5 and 6 are broken, for example, when traversing terms with syntactic vari-
ables. We extend the code generation sorts with register instructions and a new register sort, R:

I ::= . . . | POPSTORE[R] | PUSHLOAD[R] ;
R ::= r ;

We can now add code generation rules for the register operations.

CodeOfLet[Fresh[x,r]]: {Γ}CodeOf[Let[VAL, v.BODY[v]]]
→ I[({Γ}CodeOf[VAL]; POPSTORE[r]; {Γ; x:r}CodeOf[BODY[x]];)] ;

CodeOfVar[Free[x,r]]: {ST; x:r}CodeOf[x]→PUSHLOAD[r] ;

The CodeOfLet rule has the first binder pattern we have seen, v . BODY[v], in the style of combinatory
reduction systems. This requires a careful explanation that when a meta-variable in a pattern is inside
a scope, like BODY is in the scope of v, then we must provide (in [. . .]s) the precise list of variables in
scope that can occur inside BODY as a place holder for the contraction: in the contraction we can then
replace all occurrences of the variable (here v) with another variable (here x), which must be freshly
created and thus is declared with a Fresh[x] option as it breaks restriction 6. Notice that even though we
replace all occurrences of a variable with another variable, this does not count as a substitution and so
does not break restriction 7. We also create a free register variable for use by the store/load instruction
pair. Additionally, when fresh variables are used in this way then the only way they can be matched later
is as in rule CodeOfVar, which uses Free[x] to permit breaking restriction 5; like in Example 2.6 the
lookup of a variable in the list of properties does not count as non-linearity. Finally, we remark that the
proper sort declaration for CodeOf is now

{E: R}CodeOf[E] :: I ;

The explained replacement in fact follows usual formal rewriting tradition yet this point turns out to
be the most difficult to explain to programmers, and thus the aspect of CRSX where it is most important
that the system supports the programmer with severe constraints.

In contrast, the use of a “fresh” variable that is globally allocated such as for registers, or permitting
special “free” variables in patterns, is easier to explain but has a more profound impact in the formal
model, needing less structured semantics such as provided by “nominal” rewriting [6], but the right
formal model is not yet clear.

2.8 Example. For some applications, notably inlining, we wish to break restriction 7. The simplest such
rule would be an inlining Let rule.

CodeOfLetInline[Copy[VAL]]: CodeOf[Let[VAL, v.BODY[v]]]→BODY[VAL] ;

The rule is explained by noting that the variable substitution from before generalizes to “full” substitution
shown here with the caveat that since we do not know how many occurrences of v has in BODY, we must
allow for VAL to be copied. If we have a linear version of Let then a substitution rule can be written with
special ¹-marked “linear” variables,

CodeOfLinearLetInline: CodeOf[LinearLet[VAL, v1.BODY[v1]]]→BODY[VAL] ;

since at most one copy is to be created.

2.9 Example. In some cases it is necessary to write nested applications and break restriction 8. The most
common case is when the result of an analysis is passed through the environment to a later transaction
stage. We typically specify the analysis with a function with polymorphic signature

- 20 -

K.H. Rose 5

∀a.Ana[E, ok1: OK.a] :: a ;

which is then used in code like

Start[Copy[E]]: {Γ}G[E]→Ana[E, ok1.G2[ok,E]] ;
Cont: {Γ}G2[OK,E]→ . . . ;

This is explained by recalling that if G2 was not guarded as shown with the special linear ok1 parameter3

when passed to Ana in the Start rule, then the Cont rule could fire prematurely before {Γ} is populated
by the rules for Ana. The sort OK is a special built-in sort containing just the OK token.

This concludes the explanation of the restrictions. We further give a brief example of the final lan-
guage support feature of custom syntax.

2.10 Example (embedded syntax). Example 2.2 can be rewritten to introduce and use embedded syntax
by writing

E ::= J〈E〉 + 〈E〉K | J0K ;
C ::= J〈C〉 〈C〉 PLUSK | JPUSHZEROK ;
CodeOf[E] :: C ;
CodeOf[EJ0K]→CJPUSHZEROK ;
CodeOf[EJ〈LEFT〉 + 〈RIGHT〉K]→CJ〈CodeOf[LEFT]〉 〈CodeOf[RIGHT]〉 PLUSK ;

where the double brackets encapsulate embedded syntax fragments wherein the angle brackets “escape”
to normal term notation to permit meta-variables or sub-translation as appropriate (here assuming the E
scheme translates from the exp syntactic category to the code one).

The rules here are basically explained as follows: (1) E is a syntactic sort where one of the allowed
forms is the shown sum where two expressions are separated by +, an the other is the plain symbol 0;4

(2) C is a syntactic form that permits the shown postfix PLUS instruction and a PUSHZERO constant;
(3) CodeOf is a compilation scheme that takes an argument of sort E and generates a result of sort C;
(4) when CodeOf is used to translate a sum expression then it generates code for the operands followed
by the PLUS instruction, and for a zero it generates the single PUSHZERO instruction. Notice that we
have taken some liberties compared to the usual use of semantic specifications by unifying the notation:
“semantic” brackets J. . .K here just mean “subterm in native embedded syntax,” and simple angle brackets
〈. . .〉 simple mean “subterm in meta-notation (CRSX).” Also note that when using syntax in this way,
CRSX decides what the real data constructor names to use will be, so all constructions of the involved
sorts must use the SORTJ. . .K notation.

2.11 Remark. Finally, a word on modularity: our current medium sized compiler for the XQuery lan-
guage, with basic type analysis, static reduction, and code generation, comprises around three thousand
rules, and can be compiled as a single program, so CRSX has no serious separate compilation features.

3 Conclusion

We have argued that higher order rewriting systems in general, and CRSX in particular, is ready to be
introduced into the mainstream programming culture on par with tools such as parser generators and
GUI builders.

3Linear variables are only permitted in an outermost position of their scope encapsulated only in forms that are irreducible
with a variable, and cannot be syntactic, which ensures they are preserved—CRSX does not implement general linearity.

4The spacing and other lexical aspects of the parser have to be specified separately.

- 21 -

6 HOR for Real Programmers

In addition to the pure language issues discussed here, there are other necessary components. The first
is a development environment; again this is not in itself sufficient to drive adoption as witnessed by the
highly developed envrironment of the CENTAUR system [4], especially it is important that the developed
artifacts can be integrated easily with outside components. Another necessary factor is efficiency: the
final production compiler needs to be as fast as hand written compilers, however, this turns out to be
less of a problem in practice as manually written compilers tend to grow heavy under the weight of the
involved (more or less) ad hoc internal data structure manipulation and consistency checks.

In CRSX we have started experimenting with an integration of less compositional features of compil-
ers. The integration of contextual (or reduction context) “big step” rules has been done using conditional
rewriting techniques and we are working on further techniques such as “subterm hashing” (used for
common subexpression elimination) and constraint solving.

Finally, we hope that the presentation of this material can lead to a constructive discussion of what
the higher order rewriting community can do to have the impact on the computing community at large
that the power and elegance of the theory and technology deserves!

Acknowledgements. Thanks to Cynthia Kop for developing the foundations of the used sort system
and completion procedure while visiting Watson during the summer of 2011.

References

[1] A. V. Aho, R. Sethi & J. D. Ullman (1986): Compilers: Principles, Techniques and Tools. Addison-Wesley.

[2] Andrew Appel (1998): Modern Compiler Implementation in Java. Cambridge University Press.

[3] D. Bjørner & C.B. Jones (1982): Formal Specification and Software Development. Prentice Hall Interna-
tional.

[4] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang & V. Pascual (1988): Centaur: the
system. In: SIGSOFT’88—Third Annual Symposium on Software Development Environments, Boston,
USA.

[5] M.G.J. van den Brand, J. Heering, P. Klint & P. A. Olivier (2002): Compiling Language Definitions: The
ASF+SDF Compiler. ACM Transactions on Programming Languages and Systems 24(4), pp. 334–368,
doi:10.1145/567097.567099.

[6] Maribel Fernández & Murdoch J. Gabbay (2007): Nominal rewriting. Inf. Comput. 205(6), pp. 917–965,
doi:10.1016/j.ic.2006.12.002.

[7] Étienne Gagnon (1998): SableCC, an Object-Oriented Compiler Framework. Ph.D. thesis, School of Com-
puter Science, McGill University. Available at http://sablecc.sourceforge.net/thesis/thesis.
html.

[8] Peter Mosses (1979): SIS – Semantics Implementation System, Reference Manual and User’s Guide. Tech-
nical Report MD-30, DAIMI (Computer Science Department), Aarhus University.

[9] Terence Parr (2008): ANTLR v3 Tree Grammars. Available at http://www.antlr.org/wiki/display/
ANTLR3/Tree+construction.

[10] Kristoffer H. Rose (2011): CRSX – Combinatory Reduction Systems with Extensions. In Manfred Schmidt-
Schauß, editor: RTA ’11—22nd International Conference on Rewriting Techniques and Applications, Leibniz
International Proceedings in Informatics (LIPIcs) 10, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Novi Sad, Serbia, pp. 81–90, doi:10.4230/LIPIcs.RTA.2011.81. CRSX system available from http://crsx.
sf.net.

[11] Sun: JavaCC[tm]: JJTree Reference Documentation. Available at http://javacc.java.net/doc/
JJTree.html.

- 22 -

http://dx.doi.org/10.1145/567097.567099
http://dx.doi.org/10.1016/j.ic.2006.12.002
http://sablecc.sourceforge.net/thesis/thesis.html
http://sablecc.sourceforge.net/thesis/thesis.html
http://www.antlr.org/wiki/display/ANTLR3/Tree+construction
http://www.antlr.org/wiki/display/ANTLR3/Tree+construction
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.81
http://crsx.sf.net
http://crsx.sf.net
http://javacc.java.net/doc/JJTree.html
http://javacc.java.net/doc/JJTree.html

Submitted to:
c© B. Accattoli & D. Kesner

This work is licensed under the
Creative Commons Attribution License.

The permutative λ -calculus
(extended abstract)

Beniamino Accattoli
INRIA and LIX (École Polytechnique)

Delia Kesner
PPS (CNRS and Université Paris-Diderot)

We introduce the permutative λ -calculus, an extension of λ -calculus with three equations and one
reduction rule for permuting constructors, generalising many calculi in the literature, in particu-
lar Regnier’s sigma-equivalence and Moggi’s assoc-equivalence. We prove confluence modulo the
equations and preservation of beta-strong normalisation (PSN) by means of an auxiliary substitu-
tion calculus. The proof of confluence relies on M-developments, a new notion of development for
λ -terms.

1 Introduction

Background. The standard operational semantics of λ -calculus is given by β -reduction. However,
this unique notion of reduction is often extended with some other rewriting rules allowing to permute
constructors. This arises in different contexts and comes with many different motivations. A typical
example is the postponement of erasing steps, which is obtained by introducing one particular such
permutation rule [7]. Four other notable motivations for introducing permutations are: making redexes
more visible [9], analysing the relation between λ -terms and Proof-Nets [14], proving the completeness
of CPS-translation for the call-by-value λ -calculus [15], translating Moggi’s monadic metalanguage into
λ -calculus [6]. The rewriting theory of these permutation rules is often tricky, in particular when proving
strong normalisation or preservation of strong normalisation (PSN) [10, 4, 12, 16, 5]. This is indeed the
major and usually difficult question arising in all these extensions: to prove that if t is a β -strongly-
normalising λ -term then t is also strongly-normalising with respect to the extended reduction relation.

The permutative λ -calculus. The permutative λ -calculus ΛP̂ introduced in this paper extends λ -
calculus with three equations and one rewriting rule for permuting constructors. It sensibly generalises
all previous extended λ -calculi by taking — when possible — the permutations as equivalences, and not
as reductions. This is a key point of our approach. We show that the permutative λ -calculus preserves
β -strong normalisation and is Church-Rosser modulo the equivalences, the strongest possible form of
confluence for a reduction relation modulo an equivalence. Whenever an orientation of the equations (or
a subset of them) yields a terminating reduction then the system where the equations are replaced by
 enjoys PSN. Thus, our result subsumes all PSN results of the kind in the literature.

The proof technique. We study the permutative λ -calculus through an auxiliary and new calculus
with explicit substitutions (ES) called λsub. In this calculus β -reduction is split into two subsystems:
→dB which creates a substituted term t[x/u], i.e. a term t affected by a delayed/explicit substitution [x/u],
and →sub which executes the ES [x/u] — getting t{x/u} — and hence completes β -reduction. This
simple calculus is then enriched with various equivalences — thus getting the equational λsub-calculus
— obtained by what might be called an extension by continuity: if t and u are equivalent λ -terms in ΛP̂

and they →dB-reduce to t ′ and u′, respectively, then t ′ and u′ are equivalent in the equational λsub. This
requires to consider equivalences on terms with ES and not only on λ -terms.

- 23 -

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 The permutative λ -calculus

PSN. We prove PSN for the permutative λ -calculus by reducing this problem to PSN for the equa-
tional λsub-calculus, which in turn reduces to an existing result for the structural λ -calculus [3].

Confluence. Confluence of the permutative λ -calculus turns out to be delicate, and our proof is one
of the main contributions of the paper. Indeed, confluence of ΛP̂ does not follow from confluence of
λ -calculus. The usual Tait–Martin Löf technique does not work, since the equations may create/hide re-
dexes. While confluence of many reduction systems can usually be proved by means of developments [8],
this notion does not suffice in the case of ΛP̂, again because the equations create redexes. Its stronger
variant, known as superdevelopments [11] or L-developments [1] — which also reduces some created
redexes — does not work either. We then introduce a new form of development called M-development
and then derive confluence for ΛP̂, showing that M-developments satisfy an appropriate extension of Van
Oostrom Z-property [13] to rewriting modulo. A key point is that M-developments are defined and stud-
ied through the equational λsub-calculus, where the splitting of β -reduction in terms of dB and sub
becomes crucial to allow a fine analysis of redex creation. A nice fact is that our proof technique is mod-
ular, in the sense that one can choose to arbitrarily orient all or only some of the equations as rewriting
rules while keeping the proof essentially unchanged. Moreover, our proof does not rely on confluence of
λ -calculus.

Proof-Nets. Our work is the final product of a long-term study of the relation between ES and Linear
Logic Proof-Nets. Here we present the implications of our study on λ -calculus, a language without ES,
which is of a more general interest. No knowledge of Proof-Nets is assumed in the paper.

This work has been published in the proceedings of LPAR 2012 [2], to which we refer for the details.

References

[1] Beniamino Accattoli & Delia Kesner (2010): The Structural lambda-Calculus. In Anuj Dawar & Helmut
Veith, editors: Proc. of 24th Computer Science Logic (CSL), Lecture Notes in Computer Science 6247,
Springer-Verlag, pp. 381–395.

[2] Beniamino Accattoli & Delia Kesner (2012): The Permutative -Calculus. In: LPAR, Lecture Notes
in Computer Science 7180, Springer, pp. 23–36. Available at http://dx.doi.org/10.1007/
978-3-642-28717-6_5.

[3] Beniamino Accattoli & Delia Kesner (2012): Preservation of strong normalisation modulo permutations
for the structural calculus. LMCS 8.

[4] René David (2011): A short proof that adding some permutation rules to preserves SN. Theoretical Com-
puter Science 412(11), pp. 1022–1026.

[5] José Espı́rito Santo (2011): A note on preservation of strong normalisation in the λ -calculus. Theoretical
Computer Science 412(12-14), pp. 169–183.

[6] José Espı́rito Santo, Ralph Matthes & Luı́s Pinto (2009): Types for Proofs and Programs. chapter Monadic
Translation of Intuitionistic Sequent Calculus, Springer-Verlag, Berlin, Heidelberg, pp. 100–116. Available
at http://dx.doi.org/10.1007/978-3-642-02444-3_7.

[7] Philippe de Groote (1993): The Conservation Theorem revisited. In: TLCA, Lecture Notes in Computer
Science 664, Springer, pp. 163–178. Available at http://dx.doi.org/10.1007/BFb0037105.

[8] J. Roger Hindley (1978): Reductions of Residuals are Finite. Transactions of the American Mathematical
Society 240, pp. 345–361.

[9] Fairouz Kamareddine (2000): Postponement, conservation and preservation of strong normalization for
generalized reduction. Journal of Logic and Computation 10(5), pp. 721–738.

- 24 -

http://dx.doi.org/10.1007/978-3-642-28717-6_5
http://dx.doi.org/10.1007/978-3-642-28717-6_5
http://dx.doi.org/10.1007/978-3-642-02444-3_7
http://dx.doi.org/10.1007/BFb0037105

B. Accattoli & D. Kesner 3

[10] A. J. Kfoury & J. B. Wells (1995): New Notions of Reduction and Non-Semantic Proofs of beta-Strong
Normalization in Typed lambda-Calculi. In Dexter Kozen, editor: 10th Annual IEEE Symposium on Logic
in Computer Science (LICS), IEEE Computer Society Press, pp. 311–321.

[11] Jan-Willem Klop, Vincent van Oostrom & Femke van Raamsdonk (1993):
Combinatory reduction systems: introduction and survey. Theoretical Computer Science 121(1/2), pp.
279–308.

[12] Stéphane Lengrand (2008): Termination of lambda-calculus with the extra Call-By-Value rule known as assoc.
CoRR abs/0806.4859.

[13] Vincent van Oostrom: Z. Slides available on http://www.phil.uu.nl/~oostrom/publication/
rewriting.html.

[14] Laurent Regnier (1994): Une équivalence sur les lambda-termes. Theoretical Computer Science 2(126), pp.
281–292.

[15] Amr Sabry & Matthias Felleisen (1992): Reasoning about programs in continuation-passing style. In:
Proc. of LISP and functional programming, LFP ’92, ACM, New York, NY, USA, pp. 288–298,
doi:http://doi.acm.org/10.1145/141471.141563.

[16] José Espı́rito Santo (2007): Delayed Substitutions. In: RTA, pp. 169–183. Available at http://dx.doi.
org/10.1007/978-3-540-73449-9_14.

- 25 -

http://www.phil.uu.nl/~oostrom/publication/rewriting.html
http://www.phil.uu.nl/~oostrom/publication/rewriting.html
http://dx.doi.org/http://doi.acm.org/10.1145/141471.141563
http://dx.doi.org/10.1007/978-3-540-73449-9_14
http://dx.doi.org/10.1007/978-3-540-73449-9_14

Submitted to:
HOR 2012

c© T. Balabonski
This work is licensed under the
Creative Commons Attribution License.

A Unified Approach to Fully Lazy Sharing

Thibaut Balabonski
Univ Paris Diderot, Sorbonne Paris Cité,

PPS, UMR 7126, CNRS
F-75205 Paris, France

thibaut.balabonski@pps.univ-paris-diderot.fr

We give an axiomatic presentation of sharing-via-labelling for weak λ -calculi, that makes it possi-
ble to formally compare many different approaches to fully lazy sharing, and obtain two important
results. We prove that the known implementations of full laziness are all equivalent in terms of the
number of β -reductions performed, although they behave differently regarding the duplication of
terms. We establish a link between the optimality theories of weak λ -calculi and first-order rewriting
systems by expressing fully lazy λ -lifting in our framework, thus emphasizing the first-order essence
of weak reduction.

This category B paper is an extended abstract of a work presented at POPL’12 [3].

Since C.P. Wadsworth [19] introduced his graph-based algorithm for the efficient evaluation of the λ -
calculus, many evaluation techniques have been proposed that try to minimize the number of β -reduction
steps by using some sharing mechanism.

The point of sharing is the following. First remark that β -reduction, taken as such, potentially dupli-
cates subterms at each reduction step, and that duplicating a subterm which is not in normal form also
duplicates some unfinished work. Hence it would be interesting to have alternative formalisms in which
the duplicated occurrences of a given original subterm would keep a unique shared representation. This
would allows us to evaluate all the copies simultaneously, as if no duplication ever happened. This is
what we call sharing.

This work is a unified study of several approaches to sharing in the λ -calculus.

1 Graphs and fully lazy sharing

The most intuitive way of expressing sharing might be by using graphs. In the pictures, the binary node
@ represents application, and redexes1 are marked with bold lines. For instance in the center of the
following picture, an abstraction λx.t is applied to an argument a. The function body t contains two
occurrences of the variable x: the argument a is thus logically duplicated (on the left).

t

a a

@

t
λx

x x
a

t

a
The simplest notion of sharing, which may be referred to as lazy sharing, or just laziness, prevents

the previous duplication by keeping a physically unique, with two pointers to its location (right hand side
part of the previous picture).

Here the term laziness is to be taken in literal sense: the duplications are postponed as long as it is
possible, but some of them will eventually happen. For instance, a shared function has to be copied prior
to any instantiation, as shown in the picture below.

1a reducible expression, or redex, designs a place where an evaluation step can take place

- 26 -

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Unified Approach to Fully Lazy Sharing

@

t

C

λx

x x
a t

λx

x x

C
t

a

A further level of sharing, called fully lazy sharing, is based upon the following remark: the free
expressions [10] of a function body are not affected by the instantiation of the function, hence they need
not be duplicated.

The first description of fully lazy sharing is in the graph evaluation technique presented by C.P. Wadsworth [19].
This graph reduction performs only a partial copy of a duplicated function body, by avoiding the copy of
its maximal free expressions (see Example 1a).

Over the last 40 years, several works proposed various sharing mechanisms related to full laziness.
O. Shivers and M. Wand [16] enrich the graph structure of [19] to allow a simple and efficient

implementation. For this they also use a different characterization of what has to be copied.
T. Blanc, J.-J. Lévy and L. Maranget [4] derive a graph implementation of fully lazy sharing using

labels that characterize optimal sharing for a weak λ -calculus studied in [6]. This approach can copy
fewer graph nodes of the duplicated abstractions (see Example 1b).

S. Peyton-Jones [10] reaches a simple graph formalism thanks to a fully-lazy version of λ -lifting.
Following [8], fully-lazy λ -lifting turns (higher-order) λ -terms into (first-order) applicative expressions,
after extracting the maximal free expressions of the functions.

Finally, Z. Ariola and M. Felleisen [1] and P. Sestoft [15] use the extraction of maximal free ex-
pressions to build fully lazy versions of (respectively) the call-by-need λ -calculus [2] and Launchbury’s
natural semantics for laziness [13]. Both solutions are based on closures represented by let ... in ... con-
structs. The former solution [1] uses a more restrictive definition of free expressions and hence may in
some cases copy more nodes than the others (see Example 1c).

Example 1.
Bold lines identify the parts of the function that are duplicated by the different models.

λx

@
λ z
z

λy

@
x@

y y

λx

@
λ z
z

λy

@
x@

y y

λx

@
λ z
z

λy

@
x@

y y

(a) [19] (b) [4] (c) [1]

Summary. The following table sums up how each of the previous works gives its own view on fully
lazy sharing, with different interpretations of the same main idea and using various combinations of
technical tools that are sometimes hardly comparable. We use the symbol = to mean “as many copied
nodes as [19]”.

- 27 -

T. Balabonski 3

Tools
Dupl. Graphs Extraction Closures Labels

[19] = X
[10] = X X
[1] More X X

[15] = X X
[16] = X
[4] Fewer X X

This paper proposes a formal setting in which all the approaches mentioned above can be expressed.
This allows us to formally compare them and leads us to the two following conclusions:

• The previous approaches correspond to at least three different graph implementations. This means
that, strictly speaking, they do not all induce the same amount of sharing. Hence, despite the fact
that all these approaches intend to implement the same idea their equivalence is not obvious.

• However, all these approaches have the same reduction space. This means that the different im-
plementations of fully lazy sharing perform the same number of β -reductions. In other words, any
further comparison of these approaches need not anymore take this parameter into account.

2 Contributions

2.1 An axiomatic framework for sharing-via-labelling.

We build an axiomatic framework which generalizes the work of T. Blanc, J.-J. Lévy and L. Maranget [4]
and allows us to express all the previous approaches. We use labelled terms to describe the graphs
realizing optimal sharing for a given notion of weak reduction. Various weak reduction notions are
defined thanks to an axiomatic description of the parts of the program where reduction is forbidden. In
any case the restrictions concern only evaluation in the body of a non-instantiated function, called partial
evaluation. This implies that the call-by-value and call-by-name strategies are always valid. However,
the different weak calculi may or may not be confluent (see [6]).

As in [14] the link between labelled terms and graphs is made by interpreting the label of a term as
its location in memory, or graphically by its coordinate:

@α

λxβ

@γ

xι

t

t
δ

δ
@

λx
@

x
t

We call this principle sharing-via-labelling. The idea is also explored in [7]. In this setting the equality
of labels corresponds to the physical equality of two terms, which should in turn imply their syntactic
equality: two terms stored/drawn at the same place ought to be equal. The reduction of a graph-redex is
simulated by the reduction of all the labelled term-redexes with a given label. One then needs to ensure
that the sharing property (terms with equal labels are syntactically equal) is preserved by reduction.

This approach of sharing-via-labelling allows us to relate all the definitions of fully lazy sharing
that do not rely on supercombinators and λ -lifting. In other words this axiomatic framework, which is
designed in higher-order rewriting, covers the definitions of full laziness which directly operate in the
higher-order world [19, 1, 15, 16, 4]. The remaining approaches using a translation to first-order rewrit-
ing by λ -lifting [8, 10] are studied separately. The translation to first-order by means of combinators

- 28 -

4 A Unified Approach to Fully Lazy Sharing

of D. Turner [18] is out of the scope of the present paper, since these combinators simulate explicit
substitutions and then introduce additional reduction steps.

Notably due to its axiomatic nature, our framework is not suitable for an immediate implementa-
tion. On the other hand, this approach teaches us something about full laziness in general and on its
various concrete implementations. The novelty of our framework lies in the fact that it cannot be seen
as a straightforward generalization of any of the aforementioned embodiments of full laziness taken in
isolation: the axiomatization rather comes from an analysis of the similarities and the differences of all
the concrete systems. This yields a new system whose specific properties may be understood as the in-
tersection of the particular properties of the various concrete systems. In other words, our axiomatization
tries to grasp the essence of full laziness.

2.2 A formal coding of higher order into first order by λ -lifting.

The λ -lifting program transformation turns a λ -term into a first-order term. The main feature of λ -lifting
is the transformation of λ -abstractions into function symbols, also called supercombinators, over which
first-order reduction rules are defined. As emphasized in [12], this transformation unveils a tight relation
between weak λ -calculus and first-order rewriting.

Usual definitions of λ -liftings [9] proceed by first defining the transformation of λ -abstractions, and
then iteratively applying the process to a λ -term until it contains no more λ -abstractions. Definitions
differ in particular in the way in which a single λ -abstraction is transformed and on the order in which
the iteration is applied. For instance, [10] describes a bottom-up transformation, while [15] iterates in
an unspecified order. We ensure the consistence of these two views by giving a definition of fully-lazy
λ -lifting in which the order of the iterative process is irrelevant.

Since λ -lifting is an iterative process that turns progressively a λ -term into a first-order term, none of
the intermediate steps is in either of these worlds. Nevertheless, we would like to embody the source, the
target, and all the intermediate steps of the transformation into a single formalism. To this aim we use
Combinatory Reduction Systems (CRS), a higher-order rewriting framework introduced by J.W. Klop
and reviewed in [11] that mixes abstractions and symbols. The β -reduction as well as the target first-
order reduction have a straightforward encoding into CRS rules. Moreover, fully lazy λ -lifting itself
can then be seen as a rewriting process: it is expressed as a confluent and strongly normalizing CRS
reduction relation.

We provide a new proof of correctness of fully lazy λ -lifting by showing that the transformation
preserves reduction sequences: each single reduction step in the source (resp. target) system is simulated
by exactly one single step in the target (resp. source) system. The proof is small-step: the reduction
sequences are proved to be preserved in every intermediate step of the transformation. Moreover, we
prove that the notion of optimal sharing is also preserved, which has two consequences:

• The direct [19] and the λ -lifting based [10] approaches of full laziness are reduction-wise equiva-
lent.

• Fully-lazy λ -lifting establishes a link between optimal sharing in the weak λ -calculus [4] and the
better known optimality theory of first-order rewriting [14, 17]. This emphasizes in a new way
the “first-order” nature of weak reduction, without any de Bruijn indices or explicit substitutions
(contrary to [14]).

A final bonus remark is an incidental point which happens to have some theoretical significance:

- 29 -

T. Balabonski 5

while β -reduction and λ -lifting considered separately can be seen as orthogonal systems2, their com-
bination cannot. As far as the author is aware, the system derived in this paper is the first successful
optimality-oriented labelling of a non-orthogonal system.

References
[1] Z.M. Ariola & M. Felleisen (1997): The Call-By-Need lambda Calculus. J. Funct. Program. 7(3), pp. 265–

301.
[2] Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky & P. Wadler (1995): The Call-by-Need Lambda Calculus.

In: POPL, pp. 233–246.
[3] T. Balabonski (2012): A Unified Approach to Fully Lazy Sharing. In: POPL, pp. 469–480.
[4] T. Blanc, J.-J. Lévy & L. Maranget (2007): Sharing in the Weak Lambda-Calculus Revisited. In: Reflections

on Type Theory, Lambda Calculus and the Mind.
[5] H.J.S. Bruggink (2003): Residuals in Higher-Order Rewriting. In: RTA, pp. 123–137.
[6] N. Çaǧman & J. R. Hindley (1998): Combinatory Weak Reduction in Lambda Calculus. TCS 198(1-2), pp.

239–247.
[7] D. Dougherty, P. Lescanne, L. Liquori & F. Lang (2005): Addressed Term Rewriting Systems: Syntax, Se-

mantics, and Pragmatics: Extended Abstract. ENTCS 127(5), pp. 57–82.
[8] R.J.M. Hughes (1982): Super Combinators: A New Implementation Method for Applicative Languages. In:

Symposium on LISP and Functional Programming, pp. 1–10.
[9] T. Johnsson (1985): Lambda Lifting: Transforming Programs to Recursive Equations. pp. 190–203.

[10] S. Peyton Jones (1987): The Implementation of Functional Programming Languages. Prentice-Hall, Inc.
[11] J.W. Klop, V. van Oostrom & F. van Raamsdonk (1993): Combinatory Reduction Systems: Introduction and

Survey. Theor. Comput. Sci. 121(1&2), pp. 279–308.
[12] U. Dal Lago & S. Martini (2009): On Constructor Rewrite Systems and the Lambda-Calculus. In: ICALP

(2), pp. 163–174.
[13] J. Launchbury (1993): A Natural Semantics for Lazy Evaluation. In: POPL, pp. 144–154.
[14] L. Maranget (1991): Optimal Derivations in Weak Lambda-calculi and in Orthogonal Terms Rewriting

Systems. In: POPL, pp. 255–269.
[15] P. Sestoft (1997): Deriving a Lazy Abstract Machine. J. Funct. Program. 7(3), pp. 231–264.
[16] O. Shivers & M. Wand (2004): Bottom-up β -reduction: Uplinks and λ -DAGs. Technical Report RS-04-38,

BRICS.
[17] Terese (2003): Term Rewriting Systems. Cambridge Univ.Press.
[18] D.A. Turner (1979): A new implementation technique for applicative languages. Software: Practice and

Experience 9(1), pp. 31–49.
[19] C. P. Wadsworth (1971): Semantics and Pragmatics of the Lambda Calculus. Ph.D. thesis.

2in brief, a system is orthogonal when no two rules are applicable to overlapping sets of positions of a term, see for
instance [17, 5]

- 30 -

	Program transformation by templates and simply typed term pattern
	Pattern matching algorithm
	Correctness of pattern matching algorithm

